Knockdown of LncRNA MALAT1 contributes to cell apoptosis via regulating NF-κB/CD80 axis in neonatal respiratory distress syndrome.

Int J Biochem Cell Biol

First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, People's Republic of China. Electronic address:

Published: November 2018

Neonatal respiratory distress syndrome (NRDS) is a leading cause of morbidity in premature newborns and is a common reason for admission to the neonatal intensive care unit (NICU). Recent studies found that the pathogenesis of NRDS is not simply lung immaturity. Apoptosis is an essential process for the development and maturation of the lungs. In this study, we report a critical role of lncRNA MALAT1 in regulating CD80 transcription in the NRDS-associated apoptosis via binding with NF-κB. We first showed MALAT1 and CD80 were highly expressed in the peripheral blood mononuclear cells of NRDS with infection exposure. Then we found MALAT1 expressions were significantly increased by the treatment of LPS. We confirmed knockdown of MALAT1 promoted cell viability by CCK-8 assays, cell apoptosis by flow cytometric assays and cytoskeleton destruction by immunocytochemistry. We confirmed CD80 expression level was associated with cell apoptosis by affecting PARP and caspase-3. Then we demonstrated knockdown of MALAT1 promoted CD80 transcription in A549 cells. Furthermore, we confirmed that MALAT1 downregulated transcriptional expression of CD80 by interfering with NF-κB activation and disrupting its binding efficiency with the CD80 promoter in the cell nucleus. In conclusion, we first identified lncRNA MALAT1 as an important prognosis maker for NRDS patients. Most significantly, this study then demonstrated a novel regulatory function of knocked-down MALAT1 on the transcriptional level of CD80 by enhancing the binding of NF-κB to CD80 promoter. Since the interaction between MALAT1 and CD80 plays an essential role in the cell apoptosis of NRDS, our findings demonstrate the possibility of using MALAT1 as therapeutic target for treatment of NRDS, and extend existing knowledge about the molecular mechanism that underlies NRDS pathogensis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2018.09.009DOI Listing

Publication Analysis

Top Keywords

cell apoptosis
16
lncrna malat1
12
malat1
11
cd80
9
neonatal respiratory
8
respiratory distress
8
distress syndrome
8
cd80 transcription
8
binding nf-κb
8
malat1 cd80
8

Similar Publications

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.

View Article and Find Full Text PDF

Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.

View Article and Find Full Text PDF

Trazodone, dibenzoylmethane and tauroursodeoxycholic acid do not prevent motor dysfunction and neurodegeneration in Marinesco-Sjögren syndrome mice.

PLoS One

January 2025

Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

There is no cure for Marinesco-Sjögren syndrome (MSS), a genetic multisystem disease linked to loss-of-function mutations in the SIL1 gene, encoding a BiP co-chaperone. Previously, we showed that the PERK kinase inhibitor GSK2606414 delays cerebellar Purkinje cell (PC) degeneration and the onset of ataxia in the woozy mouse model of MSS. However, GSK2606414 is toxic to the pancreas and does not completely rescue the woozy phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!