As the leading cause of death for gynecological cancers, ovarian cancer (OC) ranks fifth overall for cancer-related death among women. Emerging evidence has indicated that circular RNA (circRNA), recognized as functional non-coding transcripts in eukaryotic cells, may be involved in many physiological or pathological processes. It was reported that circ-ITCH is downregulated in multi cancers and serves as a powerful tumor suppressor among through a competing endogenous RNA (ceRNA) pathway. However, the existence and the role of circ-ITCH in OC was not reported. Here, we found a broad down-regulation of circ-ITCH in OC tissues and cells, which correlates with a worse prognosis in OC patients. Functional studies suggest that circ-ITCH overexpression inhibits the cell viability and motility by CCK8, cell cycle, wound healing assay and invasion assay. It also inhibits the tumorigenesis ability in xenograft NOD mice in vivo. Mechanically, we demonstrated that circ-TCH acts as a ceRNA to sponge miR-145, increases the level of RASA1, and inhibits the malignant progression of OC cells via the circ-ITCH-miR-145-RASA1 axis in vitro and in vivo. Taken together, our findings provide a novel tumor suppressive role regarding circ-ITCH function in the malignant progression of OC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.09.060DOI Listing

Publication Analysis

Top Keywords

circular rna
8
role circ-itch
8
malignant progression
8
circ-itch
6
rna circ-itch
4
circ-itch suppresses
4
suppresses ovarian
4
ovarian carcinoma
4
carcinoma progression
4
progression targeting
4

Similar Publications

Precise modelling of mitochondrial diseases using optimized mitoBEs.

Nature

January 2025

Changping Laboratory, Beijing, The People's Republic of China.

The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs). Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants, establishing a foundation for mitochondrial disease mouse models.

View Article and Find Full Text PDF

Camellia-oil trees are economically valuable, oil-rich species within the genus Camellia, family Theaceae. Among these species, C. oleifera, a member of Section Oleifera in the genus, is the most extensively cultivated in China.

View Article and Find Full Text PDF

Sepsis is a life-threatening severe organ dysfunction, and the pathogenesis remains uncertain. Increasing evidence suggests that circRNAs, mRNAs, and microRNAs can interact to jointly regulate the development of sepsis. Identifying the interaction between ceRNA regulatory networks and sepsis may contribute to our deeper understanding of the pathogenesis of sepsis, bring new insights into early recognition and treatment of sepsis.

View Article and Find Full Text PDF

Circ_0114428 knockdown inhibits ROCK2 expression to assuage lipopolysaccharide-induced human pulmonary alveolar epithelial cell injury through miR-574-5p.

J Physiol Sci

January 2025

Department of Critical Care Medicine, The Third People's Hospital of Qingdao, No. 29 Yongping Road, Licang District, 266000, Qingdao, Shandong, China. Electronic address:

Background: Sepsis-induced acute lung injury (ALI) accounts for about 40% of ALI, accompanied by alveolar epithelial injury. The study aimed to reveal the role of circular RNA_0114428 (circ_0114428) in sepsis-induced ALI.

Methods: Human pulmonary alveolar epithelial cells (HPAEpiCs) were treated with lipopolysaccharide (LPS) to mimic a sepsis-induced ALI cell model.

View Article and Find Full Text PDF

CircMRP4 orchestrates podocytes injury via the miR-499-5p/RRAGB/mTORC1 axis in diabetic kidney disease.

Cell Signal

January 2025

Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China. Electronic address:

Diabetic kidney disease (DKD) is a chronic complication of diabetes characterized by kidney damage due to persistent hyperglycemia. A growing number of evidence indicated that circular RNAs (circRNAs) play a crucial role in diabetes and associated complications. However, the function and mechanism of circRNAs in DKD remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!