A novel heterotrophic bacterium was isolated from activated sludge of a pig farm wastewater treatment plant and identified as Acinetobacter sp. T1. It exhibited efficient heterotrophic nitrification and aerobic denitrification capability to utilize ammonium, nitrate or nitrite as the sole nitrogen source, and their removal rates were 12.08, 5.53 and 1.69 mg/L/h, respectively. Furthermore, the optimal conditions for the heterotrophic nitrification process were sodium citrate as the carbon source, C/N mass ratio of 10, pH of 8.5 and dissolved oxygen (DO) concentration of 5.1 mg/L. Only trace amounts of nitrate and nitrite were observed during the process. When the aerobic tank of the AO process of a pig farm wastewater treatment plant was inoculated with traditional activated sludge, the average removals of COD, NH- N and TN in the effluent were 30%, 15% and 16%, respectively, which was much lower than that of inoculated with strain T1, the increase was statistically significant, indicating a great potential of strain T1 for full-scale applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2018.07.025DOI Listing

Publication Analysis

Top Keywords

heterotrophic nitrification
12
pig farm
12
farm wastewater
12
wastewater treatment
12
nitrification aerobic
8
aerobic denitrification
8
activated sludge
8
treatment plant
8
nitrate nitrite
8
characteristics heterotrophic
4

Similar Publications

Structural characterization of pyruvic oxime dioxygenase, a key enzyme in heterotrophic nitrification.

J Bacteriol

January 2025

Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.

Nitrification by heterotrophic microorganisms is an important part of the nitrogen cycle in the environment. The enzyme responsible for the core function of heterotrophic nitrification is pyruvic oxime dioxygenase (POD). POD is a non-heme, Fe(II)-dependent enzyme that catalyzes the dioxygenation of pyruvic oxime to produce pyruvate and nitrite.

View Article and Find Full Text PDF

A novel bacterial strain, DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH-N.

View Article and Find Full Text PDF

This study investigates the mechanisms driving maize compensatory growth upon post-drought, to reveal how the root's original cytokinins are regulated by the two-fold roles of heterotrophic bacteria with ammonia-oxidizing (HAOB) capabilities. The HAOB' dual roles encompass influencing root cytokinin synthesis and transport through nitrification and a direct pathway. Experiment 1 involved introducing the application of varying amounts of NO to the roots to examine how nitrification affects cytokinin roots-to-leaves transport.

View Article and Find Full Text PDF

Simultaneous degradation of roxithromycin and nitrogen removal by Acinetobacter pittii TR1: Performances, pathways, and mechanisms.

J Environ Manage

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:

Pharmaceutical and aquaculture wastewater contains not only antibiotics but also high concentrations of nitrogen, but few studies have been conducted on bacteria that target this complex pollution for degradation. A novel heterotrophic nitrifying aerobic denitrifying (HN-AD) strain Acinetobacter pittii TR1 isolated from soil. When the C/N ratio was 20, the strain could degrade 50 mg/L roxithromycin (ROX) and the nitrogen removal rate was 96.

View Article and Find Full Text PDF

Understanding the performance and microbial succession in nitrogen removal using fermentation liquid as carbon source can provide a practical basis for treating low C/N ratio wastewater. In this study, three typical fermentation liquids of food waste (FW) enriched with lactic acid (LA), propionic acid (PA), and butyric acid (BA) were added to high ammonia and high salt (HAHS) wastewater treatment process. Results showed that effluent TN decreased from 50 mg/L to around 15 mg/L with the influent concentration around 1000 mg/L after adding fermentation liquid enriched with LA and PA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!