This current study is aimed towards the fabrication of AZ31 magnesium cylindrical mesh cage implant with circular holes for orthopedic applications. This mesh cage is coated with nanocomposite material containing polycaprolactone (PCL), pluronic F127 and nano hydroxyapatite (nHA) by electrospinning process. Morphology and composition were analyzed by various characterization techniques. Controlled degradation and weight loss of the nanocomposite coated samples in 28 days were observed when compared with uncoated samples in SBF (simulated body fluid). The nanocomposite coated material was not cytotoxic to MG63 osteosarcoma cells. The cell viability, morphology, ALP activity, calcium mineralization and collagen deposition were also better on this when compared to uncoated. Smooth and randomly deposited nanofibers on the mesh cage was observed and the contact angle indicated that the surface is hydrophilic with (initial contact angle of 55 ± 1° and after 10 s 0°) when compared to PCL (99°) coated surface. 2-5 fold higher mRNA expression levels of osteogenic genes namely ALP, BMP2, COL1 and RUNX2 was observed with nanocomposite coated scaffolds than uncoated and PCL coated samples in 14 days. These results indicate the potential use of the nanocomposite coated AZ31 cylindrical mesh cage for segmental bone defect repair and can be used as a degradable implant for orthopedic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.09.010 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
Faraday cages are extensively utilized in plasma-based etching and deposition processes to regulate ion behavior due to their shielding effect on electromagnetic fields. Herein, vertical silicon nanopillar arrays are fabricated through SF and O reactive ion etching. By incorporation of a Faraday cage in the plasma equipment, the impact of the Faraday cage on the morphology of the silicon nanopillars is analyzed; the Faraday cage blocks out the sputtered particles and eradicates the formation of silicon nanograss.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
J Orthop Surg Res
December 2024
Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
Background: Anterior cervical corpectomy and fusion (ACCF) is a standard surgical procedure for cervical spondylosis with spinal cord compression (CSWSCC), especially in patients with intensity on T2-weighted imaging high signal (T2WIHS). The titanium mesh cage (TMC) utilized in this procedure is essential in stabilizing the spine; however, the optimal slotting width of the TMC remains unclear.
Objective: This study aimed to investigate the impact of TMC slotting width on the clinical and radiological outcomes of ACCF in patients with spinal cord compression type cervical spondylosis with intensity on T2WIHS (CST2WIHS).
J Orthop Case Rep
November 2024
Department of Spine Surgery, Zydus Hospitals and Healthcare Research Private Limited, Ahmedabad, Gujarat, India.
Introduction: Renal cell carcinoma (RCC) accounts for 2-3% of adult malignant tumors, often metastasizing to bones, especially the spine. Spinal metastasis has a poor prognosis, but solitary spinal tumors have better outcomes with targeted chemotherapy, radiotherapy, and newer surgical approaches. Due to RCC's high vascularity and resistance to treatments, en bloc vertebrectomy with anterior and posterior fixation is the gold standard for solitary lesions.
View Article and Find Full Text PDFCureus
October 2024
Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!