A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

mTOR/STAT-3 pathway mediates mesenchymal stem cell-secreted hepatocyte growth factor protective effects against lipopolysaccharide-induced vascular endothelial barrier dysfunction and apoptosis. | LitMetric

Mesenchymal stem cells (MSCs) protect the endothelial barrier complex and survival, implicated in the pathogenesis of acute lung injury (ALI) via paracrine hepatocyte growth factor (HGF). However, the mechanism of HGF in endothelial regulation remains unclear. Here, we introduced a coculture protocol of pulmonary microvascular endothelial cells (PMVECs) and overexpression of the HGF gene of MSCs (MSC-HGF). Immunofluorescence and endothelial permeability analysis revealed that MSC-HGF protected endothelial tight junction protein occludin expression and attenuated cellular permeability as well as endothelial apoptosis. To investigate the novel mechanism mammalian TOR (mTOR)/ signal transducer and activator of transcription 3 (STAT-3) signaling in HGF protective effects against endothelial barrier and apoptosis, we used recombinant mouse HGF in endothelial cells. In addition, we used mTOR inhibitor rapamycin to inhibit the mTOR pathway. Our study demonstrated that rapamycin decreased the protective effects of HGF on the endothelium by decreasing tight junction protein occludin expression and cell proliferation, and raising lipopolysaccharide (LPS)-induced endothelial permeability, endothelial cell injury factors ET-1 and vWF. Similarly, the protective effects of HGF on reducing endothelial barrier and apoptosis were weakened when PMVECs were treated with the STAT-3 inhibitor S3I-201. Moreover, mTOR/STAT-3 were activated by HGF demonstrated as raising mTOR (Ser2448) and STAT3 (Ser727) phosphorylation proteins, leading to endothelial barrier improvement and survival. Reversely, rapamycin or S3I-201 inhibited mTOR/STAT-3 activation. Taken together, our findings highlight that the activation of the mTOR/STAT-3 pathway provides novel mechanistic insights into MSC-secreted HGF protection against LPS-induced vascular endothelial permeability dysfunction and apoptosis, which contributes to decreasing microvascular loss and lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.27642DOI Listing

Publication Analysis

Top Keywords

endothelial barrier
20
protective effects
16
endothelial
14
endothelial permeability
12
hgf
9
mtor/stat-3 pathway
8
mesenchymal stem
8
hepatocyte growth
8
growth factor
8
vascular endothelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!