Objective: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross-sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings' reproducibility.

Method: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross-site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first-episode patients.

Results: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first-episode psychosis patients (73% accuracy).

Conclusion: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acps.12964DOI Listing

Publication Analysis

Top Keywords

machine learning
16
predictive signature
12
signature
8
neuroanatomical signature
8
signature schizophrenia
8
identifying neuroanatomical
4
schizophrenia
4
schizophrenia reproducible
4
reproducible sites
4
sites stages
4

Similar Publications

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a chronic and progressive lung disease. Disulfidptosis-related genes (DRGs) may be involved in the pathogenesis of COPD. From the perspective of predictive, preventive, and personalized medicine (PPPM), clarifying the role of disulfidptosis in the development of COPD could provide a opportunity for primary prediction, targeted prevention, and personalized treatment of the disease.

View Article and Find Full Text PDF

Background: In the last years, artificial intelligence (AI) has contributed to improving healthcare including dentistry. The objective of this study was to develop a machine learning (ML) model for early childhood caries (ECC) prediction by identifying crucial health behaviours within mother-child pairs.

Methods: For the analysis, we utilized a representative sample of 724 mothers with children under six years in Bangladesh.

View Article and Find Full Text PDF

Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

View Article and Find Full Text PDF

Background: Early diagnosis of syphilis is vital for its effective control. This study aimed to develop an Artificial Intelligence (AI) diagnostic model based on radiomics technology to distinguish early syphilis from other clinical skin lesions.

Methods: The study collected 260 images of skin lesions caused by various skin infections, including 115 syphilis and 145 other infection types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!