Decomposition of antibiotic ornidazole by gamma irradiation in aqueous solution: kinetics and its removal mechanism.

Environ Sci Pollut Res Int

Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai, -400085, India.

Published: November 2018

An efficient gamma radiolytic decomposition of one of the extensively used pharmaceutical ornidazole (ORZ) was explored under different experimental conditions by varying initial concentrations, solution pHs, and doses and concentrations of inorganic ([Formula: see text]) and organic (t-BuOH) additives. The results showed that low ORZ concentrations could be efficiently decomposed using gamma irradiation. The decomposition was followed by pseudo first-order reaction kinetics with rate constant values of 2.34, 1.48, 1.11, and 0.80 kGy for the following initial concentrations: 25, 50, 75, and 100 mg L with their corresponding (G(-ORZ)) values of 1.004, 1.683, 2.237, and 2.273, respectively. Decomposition rate of ORZ was remarkably improved under acidic condition when compared to neutral or alkaline medium. It was also observed that the decomposition was primarily caused by the reaction of ORZ with radiolytically generated reactive HO radicals. The addition of HO had a synergistic effect on the decomposition and mineralization extent of ORZ. However, the removal of total organic carbon (TOC) was not as effective as the decomposition of ORZ. Finally, the quantum chemical calculations were employed to optimize the geometry structure of ORZ and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was used to identify the decomposition intermediates. On the basis of Gaussian calculations and analysis of LC-QTOF-MS, it can be inferred that ORZ radiolytic decomposition was mainly attributed to oxidative HO radicals and the direct cleavage of ORZ molecules. Possible pathways for ORZ decomposition using gamma irradiation in aqueous medium were proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3007-xDOI Listing

Publication Analysis

Top Keywords

gamma irradiation
12
decomposition
10
orz
10
irradiation aqueous
8
radiolytic decomposition
8
initial concentrations
8
decomposition antibiotic
4
antibiotic ornidazole
4
gamma
4
ornidazole gamma
4

Similar Publications

Stereotactic radiosurgery (SRS) and radiotherapy (SRT) have gained prominence as both adjuvant and primary treatment options for patients with skull base tumors that are either inoperable or present as residual or recurrent lesions post-surgery. The object of the current study is to evaluate the safety and efficacy of robotic-assisted SRS and SRT across various skull base pathologies. The study was conducted under PRISMA guidelines and involved a comprehensive evaluation of databases, including PubMed, Scopus, Embase, Web-of-Science, and the Cochrane Library.

View Article and Find Full Text PDF

Background: The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells.

View Article and Find Full Text PDF

Determination of Westcott g-factors for the assay of non-1/v nuclides using k-NAA.

Appl Radiat Isot

January 2025

Reactor Design Group, IGCAR, Kalpakkam, 603102, India.

This study examines the impact of the Westcott g-factor on the concentration of elements like In, Ir, Re, Yb, Eu and Lu, measured using neutron capture reactions (n,γ), specifically focusing on those reactions, whose thermal neutron capture cross-sections (σ ) deviate from the conventional '1/v' behaviour. These measurements are quantified using k₀-based neutron activation analysis. The Westcott g-factor for the non-1/v nuclides was calculated using the characterized neutron temperature (T) at PFTS irradiation channel of KAMINI reactor.

View Article and Find Full Text PDF

Pharmacokinetic and Metabolomic Studies with BBT-059 in Nonhuman Primates Exposed to Total-Body Gamma Radiation.

Radiat Res

December 2024

Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.

BBT-059 is a long-acting PEGylated interleukin-11 analog that has been shown to have hematopoiesis-promoting and anti-apoptotic attributes, and is being studied as a radiation countermeasure for the hematopoietic acute radiation syndrome (H-ARS). This potential countermeasure has been demonstrated to enhance survival in irradiated mice. To investigate the toxicity and safety profile of this agent, 14 nonhuman primates (NHPs, rhesus macaques) were administered two different doses of BBT-059 subcutaneously 24 h after 4 Gy total-body irradiation and were monitored for the next 60 days postirradiation.

View Article and Find Full Text PDF

Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass.

Environ Geochem Health

January 2025

Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.

Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!