A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Tendon Degeneration on Predictions of Supraspinatus Tear Propagation. | LitMetric

AI Article Synopsis

  • Rotator cuff tendons degrade with age, affecting how tears can spread in the tissue.
  • The study used a finite element model of the supraspinatus tendon to predict tear propagation based on different degeneration levels, testing 1-cm tears in various tendon sections.
  • Findings revealed that more degeneration leads to tears propagating at lower loads, emphasizing the importance of early detection and treatment for rotator cuff injuries.

Article Abstract

Rotator cuff tendons undergo degeneration with age, which could have an impact on tear propagation. The objective of this study was to predict tear propagation for different levels of tissue degeneration using an experimentally validated finite element model of a supraspinatus tendon. It was hypothesized that greater amounts of degeneration will result in tear propagation at lower loads than tendons with less degeneration. Using a previously-validated computational model of supraspinatus tendon, 1-cm tears were introduced in the anterior, middle, and posterior thirds of the tendon. Cohesive elements were assigned subject-specific failure properties to model tear propagation, and tendon degeneration ranging from "minimal" to "severe" was modeled by modifying its mechanical properties. Tears in tendons with severe degeneration required the smallest loads to propagate (122-207 N). Posterior tears required greater loads compared to middle and anterior tears at all levels of degeneration. Stress and strain required for tear propagation decreased substantially with degeneration, ranging from 8.5 MPa and 32.6% strain for minimal degeneration and 0.6 MPa and 4.5% strain for severe degeneration. Overall, this work indicates that greater amounts of tendon degeneration lead to greater risk of tear propagation, supporting the need for early detection and treatment of rotator cuff tears.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-018-02132-wDOI Listing

Publication Analysis

Top Keywords

tear propagation
28
degeneration
12
tendon degeneration
12
rotator cuff
8
model supraspinatus
8
supraspinatus tendon
8
greater amounts
8
degeneration ranging
8
severe degeneration
8
tear
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!