Understanding the fundamental alterations in brain functioning that lead to psychotic disorders remains a major challenge in clinical neuroscience. In particular, it is unknown whether any state-independent biomarkers can potentially predict the onset of psychosis and distinguish patients from healthy controls, regardless of paradigm. Here, using multi-paradigm fMRI data from the North American Prodrome Longitudinal Study consortium, we show that individuals at clinical high risk for psychosis display an intrinsic "trait-like" abnormality in brain architecture characterized as increased connectivity in the cerebello-thalamo-cortical circuitry, a pattern that is significantly more pronounced among converters compared with non-converters. This alteration is significantly correlated with disorganization symptoms and predictive of time to conversion to psychosis. Moreover, using an independent clinical sample, we demonstrate that this hyperconnectivity pattern is reliably detected and specifically present in patients with schizophrenia. These findings implicate cerebello-thalamo-cortical hyperconnectivity as a robust state-independent neural signature for psychosis prediction and characterization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155100PMC
http://dx.doi.org/10.1038/s41467-018-06350-7DOI Listing

Publication Analysis

Top Keywords

cerebello-thalamo-cortical hyperconnectivity
8
neural signature
8
signature psychosis
8
psychosis prediction
8
prediction characterization
8
psychosis
5
hyperconnectivity state-independent
4
state-independent functional
4
functional neural
4
characterization understanding
4

Similar Publications

Recent studies have showed aberrant connectivity of cerebello-thalamo-cortical circuit (CTCC) in schizophrenia (SCZ), which might be a heritable trait. However, these individual studies vary greatly in their methods and findings, and important areas within CTCC and related genetic mechanism are unclear. We searched for consistent regions of circuit dysfunction using a functional magnetic resonance imaging (fMRI) meta-analysis, followed by meta-regression and functional annotation analysis.

View Article and Find Full Text PDF

Youth at clinical high risk (CHR) for psychosis can present not only with characteristic attenuated psychotic symptoms but also may have other comorbid conditions, including anxiety and depression. These undifferentiated mood symptoms can overlap with the clinical presentation of youth with Distress syndromes. Increased resting-state functional connectivity within cerebello-thalamo-cortical (CTC) pathways has been proposed as a trait-specific biomarker for CHR.

View Article and Find Full Text PDF

It has previously been shown that cerebello-thalamo-cortical (CTC) hyperconnectivity is likely a state-independent neural signature for psychosis. However, the potential clinical utility of this change has not yet been evaluated. Here, using fMRI and clinical data acquired from 214 untreated first-episode patients with schizophrenia (62 of whom were clinically followed-up at least once at the 12th and 24th months after treatment initiation) and 179 healthy controls, we investigated whether CTC hyperconnectivity would serve as an individualized biomarker for diagnostic classification and prediction of long-term treatment outcome.

View Article and Find Full Text PDF

Our recent study has demonstrated that increased connectivity in the cerebello-thalamo-cortical (CTC) circuitry is a state-independent neural trait that can potentially predict the onset of psychosis. One possible cause of such "trait" abnormality would be genetic predisposition. Here, we tested this hypothesis using multi-paradigm functional magnetic resonance imaging (fMRI) data from two independent twin cohorts.

View Article and Find Full Text PDF

Purpose: Both the striatal-thalamo-cortical (STC) circuit and cerebello-thalamo-cortical (CTC) circuit play a critical role in Parkinson's disease (PD).

Methods: Resting-state functional MRI was used to assess functional connectivity (FC) focusing on the basal ganglia (BG) and cerebellum among early-stage drug-naïve PD patients with tremor-dominant (TD) PD patients with postural instability and gait dysfunction (PIGD) and healthy controls (HCs).

Results: Compared to HCs, both PD subgroups had higher FC between the cerebellum and paracentral lobule, sensorimotor areas; lower FC between the BG and superior frontal gyrus, and within the BG circuit; PD-TD patients showed higher FC between the BG and fusiform, paracentral lobule, cerebellum Lobule VI, and between the cerebellum and supplementary motor areas (SMA), insula; lower FC between the BG and rectus, sensorimotor areas, and within the cerebellum circuit; PD-PIGD patients showed higher FC between the cerebellum and middle frontal gyrus, precuneus; lower FC between the BG and cerebellum Crus II.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!