The model organism Dario rerio (zebrafish) is widely used in evo-devo and comparative studies. Nevertheless, little is known about the development and differentiation of the appendicular musculature in this fish. In this study, we examined the development of the muscles of all five zebrafish fin types (pectoral, pelvic, anal, dorsal and caudal). We describe the development of the muscles of these fins, including some muscles that were never mentioned in the literature, such as the interhypurales of the caudal fin. Interestingly, these caudal muscles are present in early stages but absent in adult zebrafishes. We also compare various stages of zebrafish fin muscle development with the configuration found in other extant fishes, including non-teleostean actinopterygians as well as cartilaginous fishes. The present work thus provides a basis for future developmental, comparative, evolutionary and evo-devo studies and emphasizes the importance of developmental works on muscles for a more comprehensive understanding of the origin, development and evolution of the appendicular appendages of vertebrate animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155031 | PMC |
http://dx.doi.org/10.1038/s41598-018-32567-z | DOI Listing |
Biology (Basel)
January 2025
Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
Blood flow is an important physiological endpoint to measure cardiovascular performance in animals. Because of their innate transparent bodies, zebrafish is an excellent animal model for assessing in vivo cardiovascular performance. Previously, various helpful methods for measuring blood flow in zebrafish larvae were discovered and developed.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Experimental Renal and Cardiovascular Research, Department of Nephropathology Institute of Pathology and Department of Cardiology Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany.
Background: Organs and tissues need to be vascularized during development. Similarly, vascularization is required to engineer thick tissues. How vessels are formed during organogenesis is not fully understood, and vascularization of engineered tissues remains a significant challenge.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
The aim of this work is to provide a comprehensive set of biological tests to assess the biomedical potential of novel osteochondral scaffolds with methods proposed to comply with the 3Rs principle, focusing here on a biphasic Curdlan-based osteochondral scaffold as a promising model biomaterial. experiments include the evaluation of cytotoxicity, mutagenicity, and genotoxicity referring to ISO standards, the assessment of the viability and proliferation of human chondrocytes and osteoblasts, and the estimation of inflammation after direct contact of biomaterials with human macrophages. experiments include assessments of the response of the surrounding osteochondral tissue after incubation with the implanted biomaterial.
View Article and Find Full Text PDFGenome Res
January 2025
Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins.
View Article and Find Full Text PDFJ Am Nutr Assoc
January 2025
Lavras School of Agricultural Sciences, Department of Food Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
Objective: Obesity has become one of the major public health issues and is associated with various comorbidities, including type 2 diabetes mellitus, dyslipidemia, and hypertension. Lychee seeds are considered promising ingredients for developing functional foods owing to their nutraceutical properties and phytochemical composition. This study aimed to induce obesity in zebrafish () through a hyperlipidic diet supplemented with different concentrations of lychee seed flour and to evaluate its effects on adipose tissue, biochemical parameters, oxidative stress, and caudal fin regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!