Historical climatic oscillations and co-evolutionary dependencies were key evolutionary drivers shaping the current population structure of numerous organisms. Here, we present a genome-wide study on the biogeography of the bark beetle Pityogenes chalcographus, a common and widespread insect in Eurasia. Using Restriction Associated DNA Sequencing, we studied the population structure of this beetle across a wide part of its western Palaearctic range with the goal of elucidating the role of Pleistocene glacial-interglacial cycling and its close relationship to its main host plant Norway spruce. Genetic distance among geographic sites was generally low, but clustering analysis revealed three genetically distinct groups, that is, southern, central/south-eastern, and north-eastern locations. Thus, three key P. chalcographus glacial refugia were identified: in the Italian-Dinaric region, the Carpathians, and the Russian plain, shared with its main host. The current phylogeographic signal was affected by genetic divergence among geographically isolated refugia during glacial periods and postglacial re-establishment of genetic exchange through secondary contact, reflected by admixture among genetic groups. Additionally, certain life history traits, like the beetle's dispersal and reproductive behaviour, considerably influenced its demographic history. Our results will help to understand the biogeography of other scolytine beetles, especially species with similar life history traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155062 | PMC |
http://dx.doi.org/10.1038/s41598-018-32617-6 | DOI Listing |
ACS ES T Water
January 2025
Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Russia's invasion of Ukraine continues to have a devastating effect on the well-being of Ukrainians and their environment. We evaluated a major environmental hazard caused by the war: the potential for groundwater contamination in proximity to the Zaporizhzhia Nuclear Power Plant (NPP). We quantified groundwater vulnerability with the DRASTIC index, which was originally developed by the United States Environmental Protection Agency and has been used at various locations worldwide to assess relative pollution potential.
View Article and Find Full Text PDFFollowing the commodity risk assessment of plants grafted on from China, in which (Hemiptera: Diaspididae) was identified as a pest of possible concern, the European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of for the territory of the European Union (EU). The origin of the scale insect is uncertain, with either South America or eastern Asia suggested as the native range. The geographic distribution of the species includes many countries of the continents of Africa, North and South America, Asia and Oceania.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA.
The resistance () gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from and , but limited studies are available for crops in other families, including .
View Article and Find Full Text PDFFront Antibiot
February 2024
Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents.
View Article and Find Full Text PDFThe evolving threat of new pathogen variants in the face of global environmental changes poses a risk to a sustainable crop production. Predicting and responding to how climate change affects plant-pathosystems is challenging, as environment affects host-pathogen interactions from molecular to the community level, and with eco-evolutionary feedbacks at play. To address this knowledge gap, we studied short-term within-host eco-evolutionary changes in the pathogen, , on resistant and susceptible pepper in the open-top chambers (OTCs) under elevated Ozone (O) conditions in a single growing season.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!