In this work, we study the spontaneous spreading of water droplets immersed in oil and report an unexpectedly slow kinetic regime not described by previous spreading models. We can quantitatively describe the observed regime crossover and spreading rate in the late kinetic regime with an analytical model considering the presence of periodic metastable states induced by nanoscale topographic features (characteristic area ~4 nm, height ~1 nm) observed via atomic force microscopy. The analytical model proposed in this work reveals that certain combinations of droplet volume and nanoscale topographic parameters can significantly hinder or promote wetting processes such as spreading, wicking, and imbibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155009 | PMC |
http://dx.doi.org/10.1038/s41598-018-32392-4 | DOI Listing |
Phys Rev Lett
December 2024
Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
We investigate the aging properties of phase-separation kinetics following quenches from T=∞ to a finite temperature below T_{c} of the paradigmatic two-dimensional conserved Ising model with power-law decaying long-range interactions ∼r^{-(2+σ)}. Physical aging with a power-law decay of the two-time autocorrelation function C(t,t_{w})∼(t/t_{w})^{-λ/z} is observed, displaying a complex dependence of the autocorrelation exponent λ on σ. A value of λ=3.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, 6020 Innsbruck, Austria.
We report on the temperature-dependent reactions of the carbon-chain anions C and C, as well as the hydrocarbons CH and CH with H atoms in the temperature regime between 8 and 296 K. The experiments have been carried out in a temperature-variable radiofrequency multipole ion trap. From the measured kinetics, we have derived reaction rate coefficients that are constant for all considered systems in the measured temperature regime.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. Electronic address:
Although ignition had been achieved at the National Ignition Facility (NIF), recent observations of the experiments indicate novel physics that beyond theoretical predictions emerge, e.g., the neutron analysis of experiments has revealed deviations from the Maxwellian distributions in ion relative kinetic energies of burning plasmas, with the surprising emergence of supra-thermal deuterium and tritium (DT) ions that fall outside the predictions of macroscopic statistical hydrodynamic models.
View Article and Find Full Text PDFPhys Rev E
November 2024
Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia and Institute for Problems in Mechanical Engineering RAS, Saint Petersburg 199178, Russia.
The transition from a ballistic to a diffusive regime of heat transfer is studied using two models. The first model is a one-dimensional chain with bonds, capable of dissociation. Interparticle forces in the chain are harmonic for bond deformations below a critical value, corresponding to the dissociation, and zero above this value.
View Article and Find Full Text PDFACS Nano
December 2024
Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States.
The ability to measure current and voltage is core to both fundamental study and engineering of electrochemical systems, including batteries for energy storage. Electrochemical measurements have traditionally been conducted on macroscopic electrodes on the order of 1 cm or larger. In this Perspective, we review recent developments in using microscopic electrodes (<100 μm) for the study of battery materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!