The molecular mechanisms underlying the metabolic shift toward increased glycolysis observed in pulmonary artery smooth muscle cells (PASMC) during the pathogenesis of pulmonary arterial hypertension (PAH) are not fully understood. Here we show that the glycolytic enzyme α-enolase (ENO1) regulates the metabolic reprogramming and malignant phenotype of PASMC. We show that ENO1 levels are elevated in patients with associated PAH and in animal models of hypoxic pulmonary hypertension (HPH). The silencing or inhibition of ENO1 decreases PASMC proliferation and de-differentiation, and induces PASMC apoptosis, whereas the overexpression of ENO1 promotes a synthetic, de- differentiated, and apoptotic-resistant phenotype via the AMPK-Akt pathway. The suppression of ENO1 prevents the hypoxia-induced metabolic shift from mitochondrial respiration to glycolysis in PASMC. Finally, we find that pharmacological inhibition of ENO1 reverses HPH in mice and rats, suggesting ENO1 as a regulator of pathogenic metabolic reprogramming in HPH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155017PMC
http://dx.doi.org/10.1038/s41467-018-06376-xDOI Listing

Publication Analysis

Top Keywords

malignant phenotype
8
pulmonary artery
8
artery smooth
8
smooth muscle
8
muscle cells
8
ampk-akt pathway
8
metabolic shift
8
metabolic reprogramming
8
inhibition eno1
8
eno1
7

Similar Publications

Repurposing Osimertinib and Gedatolisib for Glioblastoma Treatment: Evidence of Synergistic Effects in an In Vitro Phenotypic Study.

Pharmaceuticals (Basel)

December 2024

Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Glioblastoma is a malignant tumor with a poor prognosis for the patient due to its high lethality and limited chemotherapy available. Therefore, from the point of view of chemotherapy treatment, glioblastoma can be considered an unmet medical need. This has led to the investigation of new drugs for monotherapy or associations, acting by synergistic pharmacological mechanisms.

View Article and Find Full Text PDF

Molecular Research and Treatment of Urologic Cancer.

Int J Mol Sci

December 2024

Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.

Urologic cancers exhibit tumor heterogeneity in their morphology, gene expression, and phenotypic features, and have different responses to drug treatment [...

View Article and Find Full Text PDF

Different Cytotoxic Effects of Cisplatin on Pancreatic Ductal Adenocarcinoma Cell Lines.

Int J Mol Sci

December 2024

Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Provinciale per Monteroni, 73100 Lecce, Italy.

This study examined the response to cisplatin in BxPC-3, Mia-Paca-2, PANC-1, and YAPC pancreatic cancer lines with different genotypic and phenotypic characteristics, and the mechanisms associated with their resistance. BxPC-3 and MIA-PaCa-2 cell lines were the most sensitive to cisplatin, while YAPC and PANC-1 were more resistant. Consistently, in cisplatin-treated BxPC-3 cells, the cleavage patterns of pro-caspase-9, -7, -3, and PARP-1 demonstrated that they were more sensitive than YAPC cells.

View Article and Find Full Text PDF

Paclitaxel is a widely used chemotherapeutic agent for the treatment of breast cancer (BC), including as a front-line treatment for triple-negative breast cancer (TNBC) patients. However, resistance to paclitaxel remains one of the major causes of death associated with treatment failure. Multiple studies have demonstrated that miRNAs play a role in paclitaxel resistance and are associated with both disease progression and metastasis.

View Article and Find Full Text PDF

Proteasome Inhibitors Induce Apoptosis in Ex Vivo Cells of T-Cell Prolymphocytic Leukemia.

Int J Mol Sci

December 2024

Hematology Section, Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, 35122 Padova, Italy.

Finding an effective treatment for T-PLL patients remains a significant challenge. Alemtuzumab, currently the gold standard, is insufficient in managing the aggressiveness of the disease in the long term. Consequently, numerous efforts are underway to address this unmet clinical need.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!