Cell interactions and cytotoxic studies of cellulose nanofibers from Curauá natural fibers.

Carbohydr Polym

Center for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, ON, M5S3B3, Canada.

Published: December 2018

AI Article Synopsis

  • Cellulose nanofibers (CNF) were extracted from Curauá fibers using a mechanical grinder and mild chemical treatment, resulting in long, flexible nanofibers.
  • SAXS techniques showed that these nanofibers have a twisted ribbon structure, and rheological measurements indicated high viscosity and thixotropic behavior, which suggests promising applications in the biomedical field.
  • Toxicological studies revealed that the CNF materials are non-cytotoxic, with Vero cells showing higher adhesion to the CNF surface, likely due to their favorable surface properties and the absence of hazardous chemicals in their production.

Article Abstract

Cellulose nanofibers (CNF) were isolated from Curauá fibers (Ananas erectifolius L. B. Smith) through a mechanical grinder preceded by mild chemical treatment. Morphology and surface characteristics of the fibers were followed until it reaches the nanoscale as long and flexible nanofibers. In aqueous suspensions, SAXS techniques revealed that such nanofibers present a twisted ribbon structure while rheological measurements demonstrate its high viscosity and a thixotropic behavior. These characteristics suggests the potential application of CNF in biomedical field, which, in turn, stimulates the toxicological studies of such materials. The obtained materials do not show any sign of cytotoxicity by direct or indirect assays for cell viability and cell morphology using Vero cells. Moreover, during the adhesion test, the cells demonstrated higher affinity to the CNF surface. It can be related to its surface properties and its obtaining conditions, which did not use any hazardous chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.08.056DOI Listing

Publication Analysis

Top Keywords

cellulose nanofibers
8
cell interactions
4
interactions cytotoxic
4
cytotoxic studies
4
studies cellulose
4
nanofibers
4
nanofibers curauá
4
curauá natural
4
natural fibers
4
fibers cellulose
4

Similar Publications

Cellulose nanofiber-created air barrier enabling closed-cell foams prepared via oven-drying.

Carbohydr Polym

March 2025

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:

Cellulose foams are renewable and biodegradable materials that are promising substitutes for plastic foams. However, the scale-up fabrication of cellulose foams is severely hindered by technological complexity and cost- and time-consuming drying processes. Here, we developed a facile and robust method to fabricate cellulose foams via oven-drying following surfactant-assisted mechanical foaming of cellulose nanofibers (CNFs).

View Article and Find Full Text PDF

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.

View Article and Find Full Text PDF

Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates.

View Article and Find Full Text PDF

Near-Field Direct Write Electrospinning of PET-Carbon Quantum Dot Solutions.

Materials (Basel)

December 2024

Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark.

Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to generate well-defined patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!