Nanoparticles capture on cellulose nanofiber depth filters.

Carbohydr Polym

Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Materials Laboratory, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.

Published: December 2018

A self-standing filter with a porosity of 80% is prepared from naturally abundant cellulose biopolymer in its native state by water-based cationization and freeze-drying processes. The positive surface charge of the filter in a wide pH range favors its interaction with various nanoparticles (NPs), while its tortuous sheet structure builds a contact between cellulose nanofibers (CNF) and the NPs, and hinders them to pass through the filter. Unlike membranes used for the retention of NPs and viruses, the separation in the CNF filter is not only limited to its surface but occurs also in its interior even when the NPs are orders of magnitude smaller than the filter pores. Additional functionalities added to the filter enlarge the spectrum of NPs it can separate. NPs supported onto the filter can thereafter be utilized for the reduction of harmful chemicals into their benign form. The present filter concept may not only address shortcomings of the current membrane systems, but could offer a disruptive technology for the sustainable and universal water purification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.07.068DOI Listing

Publication Analysis

Top Keywords

filter
8
nps
6
nanoparticles capture
4
capture cellulose
4
cellulose nanofiber
4
nanofiber depth
4
depth filters
4
filters self-standing
4
self-standing filter
4
filter porosity
4

Similar Publications

Ultrasound blood flow imaging plays a crucial role in the diagnosis of cardiovascular and cerebrovascular diseases. Conventional ultrafast ultrasound plane-wave imaging techniques have limited capabilities in microvascular imaging. To enhance the quality of blood flow imaging, this study proposes a microbubble-based H-Scan ultrasound imaging technique.

View Article and Find Full Text PDF

Range and accuracy of in-plane anisotropic thermal conductivity measurement using the laser-based Ångstrom method.

Rev Sci Instrum

January 2025

Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials.

View Article and Find Full Text PDF

Brain tumors can cause difficulties in normal brain function and are capable of developing in various regions of the brain. Malignant tumours can develop quickly, pass through neighboring tissues, and extend to further brain regions or the central nervous system. In contrast, healthy tumors typically develop slowly and do not invade surrounding tissues.

View Article and Find Full Text PDF

The amount of information contained in speech signals is a fundamental concern of speech-based technologies and is particularly relevant in speech perception. Measuring the mutual information of actual speech signals is non-trivial, and quantitative measurements have not been extensively conducted to date. Recent advancements in machine learning have made it possible to directly measure mutual information using data.

View Article and Find Full Text PDF

Studies generating transcriptomics, proteomics, lipidomics, and metabolomics (colloquially referred to as "omics") data allow researchers to find biomarkers or molecular targets or understand complex biological structures and functions by identifying changes in biomolecule abundance and expression between experimental conditions. Omics data are multidimensional, and oftentimes summarization techniques such as principal component analysis (PCA) are used to identify high-level patterns in data. Though useful, these summaries do not allow exploration of detailed patterns in omics data that may have biological relevance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!