Highly adsorptive oxidized starch nanoparticles for efficient urea removal.

Carbohydr Polym

Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia.

Published: December 2018

Portable dialysis is a need to implement daily and nocturnal hemodialysis. To realize portable dialysis, a dialysate regeneration system comprising superior adsorbents is required to regenerate the used dialysate. This study aims to develop a nano-adsorbent, derived from corn starch for urea removal. Oxidized starch nanoparticles (oxy-SNPs) were prepared via liquid phase oxidation, followed by chemical dissolution and non-solvent precipitation. The oxy-SNPs possessed Z-average size of 177.7 nm with carbonyl and carboxyl contents of 0.068 and 0.048 per 100 glucose units, respectively. The urea adsorption achieved the equilibrium after 4 h with 95% removal. The adsorption mechanism fitted Langmuir isotherm while the adsorption kinetics obeyed pseudo-second-order model. This new material has a maximum adsorption capacity of 185.2 mg/g with a rate constant of 0.04 g/mg.h. Moreover, the oxy-SNPs exhibited the urea uptake recovery of 91.6%. Oxy-SNPs can become a promising adsorbent for dialysate regeneration system to remove urea.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.08.069DOI Listing

Publication Analysis

Top Keywords

oxidized starch
8
starch nanoparticles
8
urea removal
8
portable dialysis
8
dialysate regeneration
8
regeneration system
8
urea
5
highly adsorptive
4
adsorptive oxidized
4
nanoparticles efficient
4

Similar Publications

Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels.

View Article and Find Full Text PDF

The present study intended to investigate the properties of collagen peptide (CP)-astragaloside (AG) nanocomplexes (CPANs) improved oxidized hydroxypropyl starch (OHS)/chitosan (CS) (OC) film and to explore the preservation of chilled beef. The results indicated that AG significantly enhanced the stability, antioxidant capacity, and antibacterial properties of CP through mechanisms like static quenching and hydrophobic interactions. The incorporation of CPANs improved thickness, swellability, and water vapor blocking, UV-blocking and mechanical properties, antioxidant and antibacterial activity of OC film.

View Article and Find Full Text PDF

Soluble starch/zinc oxide nanocomposites could be promising candidates for eco-friendly antimicrobial, food packaging, and a wide range of other utilization. In order to find a new way for the preparation of this kind of nanocomposites, an efficient and energy-saving reaction for the synthesis of soluble starch/zinc oxide nanocomposites has been investigated. The reaction was implemented in a solid state at room temperature without post-reaction calcination.

View Article and Find Full Text PDF

The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.

View Article and Find Full Text PDF

The aim of this study was to compare the functional properties of linseed oil powders made of three types of wall material (OSA starch + maltodextrin, OSA starch + nutriose, and OSA starch + inulin) and two types of emulsion phases (micro- and nanoemulsion). For these independent variables, the properties of the prepared emulsions (flow curves and viscosity) and the resulting powders (encapsulation efficiency, particle size distribution, water activity, bulk and tapped density, Carr's index, color parameters, and thermal stability) were determined. The results showed that emulsion viscosity and most powder properties were affected by the emulsion type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!