A "green" and highly efficient route was proposed to fabricate ultrafine cellulose fibers. The processing steps include cellulose dissolution, gel preparation, melt-electrospinning and fiber coagulation. High DP cellulose can be easily dissolved in 1-butyl-3-methylimidazolium chloride (BmimCl) when the blend was stirred at 110 °C for 2 h. The maximum solubility can reach up to 16.7 wt%. A homogeneous ternary cellulose/BmimCl/ethanol or cellulose/BmimCl/water gel was made by the methods of crystallization and casting for the purpose of fixing the shape of the cellulose/BmimCl solution. After laser-heating and electrospinning, multiple jets were ejected from the gel tip and then frozen on a super cold target. Pure cellulose fibers without beads and blocks were achieved after coagulation. The results of WAXD and FTIR indicated that the regenerated cellulose fibers were amorphous and chemically stable. More importantly, this approach can be applied to other polysaccharides for the preparation of ultrafine fibers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.08.062 | DOI Listing |
Nanomicro Lett
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Department, Faculty of Engineering, University of Blida, PO Box 270, Blida 09000, Algeria.
Investigating the fascinating world of natural fibers, where Syagrus romanzoffiana fibers (SrFs) are promising substitutes for glass and synthetic fibers in composite materials, is more than interesting. The improvement of SrFs through an environmentally friendly treatment employing sodium bicarbonate (NaHCO₃) at different concentrations (5 %, 10 %, 20 %, and 30 % by weight) over various durations (24, 72, and 168 h) is the subject of this study. The objective is to provide a sustainable and economical approach to enhancing fiber characteristics.
View Article and Find Full Text PDFACS Omega
January 2025
Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh.
The increasing demand for sustainable resources has revived the research on cellulose over the last decades. Therefore, the current research focused on the synthesis of biopolymers for the development of viable tableware utensils from cellulose of coconut coir. The synthesized biopolymer was characterized by using Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), tensile strength, and contact angle.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK. Electronic address:
Little information exists on the interactions between microfibres (MFs) and marine macroalgae. In this study, the translucent green seaweed, Ulva lactuca, has been exposed to ∼2 mg L suspensions of MFs prepared from dryer lint under controlled conditions, with MFs on the alga surface and remaining in seawater subsequently counted and characterised. MFs were mainly <2 mm and cellulosic, and contained various additives and chemicals used in textile treatment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
Obesity and metabolic disorders are rising global health concerns, emphasizing the need for effective dietary interventions. High-viscosity dietary fibers such as bacterial cellulose (BC) and guar gum (GG) have unique properties that may complement each other in modulating gut microbiota and metabolic health. This study investigates their effects in high-fat diet-fed mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!