Uptake and Distribution of Fenoxanil-Loaded Mesoporous Silica Nanoparticles in Rice Plants.

Int J Mol Sci

Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.

Published: September 2018

Mesoporous silica nanoparticles (MSNs) can be used as carriers to deliver pesticides into plants, which is considered to be one method of improving the efficacy of pesticide usage in agricultural production. In the present work, MSNs with an average diameter of 258.1 nm were synthesized and loaded with Fenoxanil. The structure of the nanocarriers was observed by scanning electron microscopy. The loading content of Fenoxanil-loaded MSNs was investigated. After rice plants in a hydroponic system were treated with loaded MSNs, the concentrations of Fenoxanil in different samples were determined using high-performance liquid chromatography⁻tandem mass spectrometry. The results suggested that rice plants can absorb MSNs from water through their roots, and the dosage has almost no effect on the distribution of Fenoxanil in rice plants. The application of pesticide-loaded nanoparticles in a hydroponic system poses a low risk of Fenoxanil accumulation in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213141PMC
http://dx.doi.org/10.3390/ijms19102854DOI Listing

Publication Analysis

Top Keywords

rice plants
16
mesoporous silica
8
silica nanoparticles
8
hydroponic system
8
rice
5
plants
5
msns
5
uptake distribution
4
distribution fenoxanil-loaded
4
fenoxanil-loaded mesoporous
4

Similar Publications

The haploid induction ability analysis of various mutation of OsMATL and OsDMPs in rice.

BMC Biol

January 2025

National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.

Background: The high-frequency induction rate of haploid is crucial for double haploid (DH) breeding. The combination of multiple haploid-induced genes, such as ZmPLA1/MATL/NLD and ZmDMP, can synergistically enhance the haploid induction rate (HIR) in maize. However, the potential synergistic effects between OsMATL and OsDMP genes in rice remain unclear.

View Article and Find Full Text PDF

The Chinese government attaches great importance to the ecological restoration of abandoned open-pit mines, increasing the area of cultivated land, and ensuring food security. Soil reconstruction is a crucial step in ecological restoration of abandoned open-pit mines. This study investigated the utilization of hydrophobic sand to create an Air-Permeable Aquiclude (APAC) under the plant root zones, thereby minimizing water infiltration and enhancing soil aeration.

View Article and Find Full Text PDF

Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.

View Article and Find Full Text PDF

Deepening water scarcity in breadbasket nations.

Nat Commun

January 2025

Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA.

Water is crucial for meeting sustainability targets, but its unsustainable use threatens human wellbeing and the environment. Past assessments of water scarcity (i.e.

View Article and Find Full Text PDF

Microbubble-assisted starch modification (MASM) using different gases (N, CO and air) was employed to assess the effects of hydrodynamic cavitation (HC) on various botanical starches, including potato, wheat, corn and rice. SEM showed that N- and CO- microbubbles created more pronounced holes and cracks on the starch surfaces than air-microbubbles. The hydrodynamic cavitation-assisted microbubble (HCAM) treatment significantly reduced the amorphous and crystalline structures in potato and wheat starches, with less impact observed in corn and rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!