Interest in extracellular vesicles and in particular microvesicles and exosomes, which are constitutively produced by cells, is on the rise for their huge potential as biomarkers in a high number of disorders and pathologies as they are considered as carriers of information among cells, as well as being responsible for the spreading of diseases. Current methods of analysis of microvesicles and exosomes do not fulfill the requirements for their in-depth investigation and the complete exploitation of their diagnostic and prognostic value. Lab-on-chip methods have the potential and capabilities to bridge this gap and the technology is mature enough to provide all the necessary steps for a completely automated analysis of extracellular vesicles in body fluids. In this paper we provide an overview of the biological role of extracellular vesicles, standard biochemical methods of analysis and their limits, and a survey of lab-on-chip methods that are able to meet the needs of a deeper exploitation of these biological entities to drive their use in common clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210978PMC
http://dx.doi.org/10.3390/s18103175DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
12
microvesicles exosomes
8
methods analysis
8
lab-on-chip methods
8
lab-on-chip exosomes
4
exosomes microvesicles
4
microvesicles detection
4
detection characterization
4
characterization interest
4
interest extracellular
4

Similar Publications

Background: Extracellular vesicles (EVs) have procoagulative properties. As EVs are known to accumulate in stored blood products, we compared the EV content and coagulation capacity of leukoreduced cold-stored whole blood (CSWB) with current prehospital and in-hospital component therapies to understand the role of EVs in the haemostatic capacity of ageing CSWB.

Materials And Methods: Blood was obtained from 12 O RhD-positive male donors.

View Article and Find Full Text PDF

Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics.

Biomark Res

January 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.

Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.

View Article and Find Full Text PDF

Introduction: Group B Streptococcus (GBS) is an opportunistic pathogen that can induce chorioamnionitis (CA), increasing the risk of neurodevelopmental disorders (NDDs) in the offspring. The placenta facilitates maternal-fetal communication through the release of extracellular vesicles (EVs), which may carry inflammatory molecules such as interleukin (IL)-1. Although the role of EVs in immune modulation is well established, their specific characterization in the context of GBS-induced CA has not yet been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!