The introduction of arbitrary waveform generator (AWG) technology and the availability of high power microwave amplifiers mark a "new era" in pulse EPR due to significant sensitivity improvements and the possibility to perform novel types of experiments. We present an optimized 4-pulse DEER setup that uses Gaussian observer pulses (GaussDEER) in connection with a Gaussian/shaped pump pulse. Gaussian pulses allow to experimentally remove the "2+1" pulse train ESE signal which is intrinsically present in any DEER experiment performed with rectangular pulses. Further signal improvements are obtained with shaped pump pulses, which can significantly increase the modulation depth of the DEER experiment due to their tailored excitation bandwidth. Although sequences like CP (Carr-Purcell) DEER offer advantages such as a prolongation of the dipolar evolution time, they suffer from post-processing of the time-domain data to remove artifacts. Therefore, it is worth having a 4-pulse DEER experiment free of residual "2+1" signal since this is still the main dipolar spectroscopic technique used in structural biology. In this work we focus on nitroxides, which are the spin probes primarily used in site-directed spin labeling studies of biomolecules, however, the advantages introduced by Gaussian pulses can be extended to any spin type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2018.09.003 | DOI Listing |
Inorg Chem
December 2024
Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
The synthesis of a series of [4]rotaxanes, each consisting of three [2]rotaxanes joined via a central {CrNi} triangular linker, is reported. The resultant four [4]rotaxanes were characterized by single crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy. Orientation-selective 4-pulse double electron-electron resonance (DEER) measurements between the three {CrNi} rings incorporated in each [4]rotaxane reveal that each system is conformationally fluxional in solution, with the most abundant conformations found to differ significantly from the crystal structure geometry for each compound.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2022
ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, Zurich, Switzerland.
Dipolar electron paramagnetic resonance (EPR) experiments, such as double electron-electron resonance (DEER), measure distributions of nanometer-scale distances between unpaired electrons, which provide valuable information for structural characterization of proteins and other macromolecular systems. We present an extension to our previously published general model based on dipolar pathways valid for multi-dimensional dipolar EPR experiments with more than two spin-1/2 labels. We examine the 4-pulse DEER and TRIER experiments in terms of dipolar pathways and show experimental results confirming the theoretical predictions.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2022
EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stift-straße 34-36, Mülheim an der Ruhr, 45470, Germany.
Electron paramagnetic resonance (EPR) experiments for protein structure determination using double electron-electron resonance (DEER) spectroscopy rely on high-power microwave amplifiers (>300 W) to create the short pulse lengths needed to excite a sizable portion of the spectrum. The recently introduced self-resonant microhelix combines a high conversion efficiency with an intrinsically large bandwidth (low -value) and a high absolute sensitivity. We report dead times in 3-pulse DEER experiments as low as 14 ± 2 ns achieved using less than 1 W of power at X-band (nominally 9.
View Article and Find Full Text PDFJ Magn Reson
January 2019
Beijing Nuclear Magnetic Resonance Center and College of Chemistry and Molecular Engineering, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, People's Republic of China. Electronic address:
Over the past decades pulsed electron-electron double resonance (PELDOR), often called double electron-electron resonance (DEER), became one of the major spectroscopic tools for measurements of nanometer-scale distances and distance distributions in non-crystalline biological and chemical systems. The method is based on detecting the amplitude of the primary (3-pulse DEER) or refocused (4-pulse DEER) spin echo for the so-called "observer" spins when the other spins coupled to the former by a dipolar interaction are flipped by a "pump" pulse at another EPR frequency. While the timing of the pump pulse is varied in steps, the positions of the observer pulses are typically fixed.
View Article and Find Full Text PDFJ Magn Reson
November 2018
Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany. Electronic address:
The introduction of arbitrary waveform generator (AWG) technology and the availability of high power microwave amplifiers mark a "new era" in pulse EPR due to significant sensitivity improvements and the possibility to perform novel types of experiments. We present an optimized 4-pulse DEER setup that uses Gaussian observer pulses (GaussDEER) in connection with a Gaussian/shaped pump pulse. Gaussian pulses allow to experimentally remove the "2+1" pulse train ESE signal which is intrinsically present in any DEER experiment performed with rectangular pulses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!