The effect of ultra-low temperature on the flammability limits of a methane/air/diluent mixtures.

J Hazard Mater

Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Università di Bologna, via Terracini 28, 40131 Bologna, Italy. Electronic address:

Published: January 2019

Natural gas represents an attractive fuel for industrialized and developing countries seeking an alternative to petroleum. Due to economic and safety considerations, liquefied natural gas (LNG) at cryogenic conditions is preferred for storage and transportation. The main drawback is the poor understanding of the physical and chemical phenomena that occur at the storage conditions of liquid methane, i.e. at ultra-low temperatures around 110 K and, if released, at temperatures below ambient. In this work, a procedure to evaluate the laminar burning velocity, the flammability limit (FL) and the limiting oxygen concentration (LOC) of methane-air-diluent mixtures based on detailed kinetic mechanism at ultra-low temperatures is proposed. The estimation of the FL was obtained with the limiting burning velocity theory. The effects of inert content (extinguishing) and agent (N, HO and CO) on FL were evaluated and compared with data retrieved from the literature. The agreement between experimental observation and model results from 200 K-300 K incentivizes the adoption of the new procedure for further studies of fuel reactivity and safety parameters. Moreover, the proposed procedure may be suitable for the estimation of the safety parameters of complex fuel mixtures whose composition is closer to the actual values of LNG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2018.09.018DOI Listing

Publication Analysis

Top Keywords

natural gas
8
ultra-low temperatures
8
burning velocity
8
safety parameters
8
ultra-low temperature
4
temperature flammability
4
flammability limits
4
limits methane/air/diluent
4
methane/air/diluent mixtures
4
mixtures natural
4

Similar Publications

This study aims to explore the mechanism behind the influence of stress on gas adsorption by coal during deep mining and improve the accuracy of gas disaster prevention and control. To achieve this aim, thermodynamic analysis was conducted on the process of gas adsorption by loaded coal, and modified thermodynamic model proposed by previous scholars. It is found that stress plays an important role in gas adsorption by coal.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems.

Water Res

January 2025

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:

Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!