Dexmedetomidine ameliorates lidocaine-induced spinal neurotoxicity via inhibiting glutamate release and the PKC pathway.

Neurotoxicology

Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. Electronic address:

Published: December 2018

Dexmedetomidine, a selective α adrenergic agonist, has been shown to have neuroprotective and anti-apoptotic effects. To further investigate the underlying mechanisms, we used a rat model of spinal neurotoxicity induced by intrathecal administration of lidocaine. Four days after intrathecal catheter implantation, rats received an intraperitoneal injection of various doses of dexmedetomidine before an intrathecal injection of 20 μL 10% lidocaine. Dexmedetomidine-pretreated rats were also exposed to a selective α-adrenergic antagonist (yohimbine) or a specific protein kinase C (PKC) inhibitor (Gö 6983) that selectively inhibits several PKC isoforms. Lidocaine injection significantly damaged the spinal cord: hind limb locomotor function was reduced and tail-flick latency was prolonged; significant spinal cord damage and neuronal apoptosis were identified using histological and TUNEL staining assays; increased glutamate release was detected using high performance liquid chromatography (HPLC) analysis; and increased expression of PKC and PKCβI was detected using Western blotting analysis. Pretreatment with dexmedetomidine ameliorated all of the lidocaine-induced effects; however, this protection was abolished when yohimbine or Gö 6983 was injected together with dexmedetomidine. Our results indicate that dexmedetomidine protects the spinal cord from lidocaine-induced spinal neurotoxicity through regulating PKC expression and glutamate release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2018.09.004DOI Listing

Publication Analysis

Top Keywords

spinal neurotoxicity
12
glutamate release
12
spinal cord
12
lidocaine-induced spinal
8
gö 6983
8
dexmedetomidine
6
spinal
6
pkc
5
dexmedetomidine ameliorates
4
ameliorates lidocaine-induced
4

Similar Publications

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.

View Article and Find Full Text PDF

An apparent outbreak of fenugreek forage toxicosis occurred in a beef cattle herd near Moose Jaw, Saskatchewan in February-May 2022. The herd had consumed fenugreek hay from late fall to early winter. Clinical signs included various degrees of weakness, ataxia, knuckling, walking on hocks, and recumbency.

View Article and Find Full Text PDF

Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6.

View Article and Find Full Text PDF

Protective Effects of Heat-Killed Lactobacilli against Plasma-Induced Neurotoxicity in Multiple Sclerosis.

Probiotics Antimicrob Proteins

January 2025

Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Heat-killed lactobacilli seem to have protective effects against oxidative stress and neurotoxicity. This study aimed to evaluate the antioxidant properties of specific heat-killed lactobacilli extracts and determine their neuroprotective effects against the neurotoxicity induced by blood plasma from people with multiple sclerosis (MS). The antioxidant activity of the three heat-killed lactobacilli was measured using the DPPH assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!