Modelling skin wound healing angiogenesis: A review.

J Theor Biol

INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal. Electronic address:

Published: December 2018

The occurrence of wounds is a main health concern in Western society due to their high frequency and treatment cost. During wound healing, the formation of a functional blood vessel network through angiogenesis is an essential process. Angiogenesis allows the reestablishment of the normal blood flow, the sufficient exchange of oxygen and nutrients and the removal of metabolic waste, necessary for cell proliferation and viability. Mathematical and computational models provide new tools to improve the healing process. In fact, over the last thirty years, in silico models have been continuously formulated to describe the effect of several biological and mechanical factors in angiogenesis during wound healing. Additionally, with different levels of complexity, these models allow coupling the human skin structure, to distinct cell types and growth factors, to study extracellular matrix composition and to understand its deformation. This paper discusses how in silico models, which are more economical and less time-consuming comparatively to laboratory methodologies, can help test new strategies to promote/optimize angiogenesis. The continuum, cell-based and hybrid mathematical models of wound healing angiogenesis are reviewed in the present paper, in order to identify possible improvements. Accordingly, the development of higher dimension models incorporating multiscale analysis at molecular, cellular and tissue level remains a challenge that future models should consider.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2018.09.020DOI Listing

Publication Analysis

Top Keywords

wound healing
16
healing angiogenesis
8
silico models
8
models
7
angiogenesis
6
healing
5
modelling skin
4
wound
4
skin wound
4
angiogenesis review
4

Similar Publications

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

NIR photo-responsive injectable chitosan/hyaluronic acid hydrogels with controlled NO release for the treatment of MRSA infections.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530000, China. Electronic address:

Due to resistance to common antibiotics, methicillin-resistant Staphylococcus aureus (MRSA) infections pose a significant threat to human health. In this study, we developed an injectable, adhesive, and biocompatible hydrogel with multiple functions. Specifically, carboxymethyl chitosan (CMCS) crosslinked with hyaluronic acid (HA) forms the primary framework of the hydrogel.

View Article and Find Full Text PDF

The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.

View Article and Find Full Text PDF

Xanthium strumarium/gelatin methacryloyl based hydrogels with anti-inflammatory and antioxidant properties for diabetic wound healing via akt/mtor pathway.

Int J Biol Macromol

January 2025

Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China. Electronic address:

Chronic wound healing is often hindered by long-term inflammation and redox imbalance. Herbal medicine, with its rich medicinal components such as polysaccharides, flavonoids, phenolic acids, and small-molecule nutrients, has gained attention for its anti-inflammatory and antioxidant properties. Xanthium strumarium (XS) is a potent anti-inflammatory herb that has shown promise in treating conditions like rhinitis and may have specific benefits for chronic skin wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!