The selection of a reaction pathway with high energy barrier in a multipath on-surface reaction system has been challenging. Herein, we report the successful control of the reaction system of 1,1'-biphenyl-4-bromo-4'-ethynyl (BPBE) on Ag(111), in which three coupling reactions (Glaser, Ullman, Sonogashira) are involved. Either graphdiyne (GDY) or graphyne (GY) nanowires can be formed by distinct kinetic strategies. As the energetically favorable pathway, the formation of a GDY nanowire is achieved by hierarchical activation of Glaser (with lowest energy barrier) and Ullman coupling of BPBE. On the other hand, the formation of a GY nanowire originates from the high selectivity of the high-barrier Sonogashira coupling, whose indispensable kinetic parameters are high surface temperature, low molecular coverage, and low precursor evaporation rate, as derived from a series of control experiments. This work achieves the fabrication of GY nanowires via on-surface Sonogashira coupling for the first time and reveals mechanistic control strategies for potential syntheses of other functional nanostructures via cross-couplings on surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b08477DOI Listing

Publication Analysis

Top Keywords

sonogashira coupling
12
kinetic strategies
8
graphyne nanowires
8
energy barrier
8
reaction system
8
coupling
5
strategies formation
4
formation graphyne
4
sonogashira
4
nanowires sonogashira
4

Similar Publications

Objective: In search of efficient anticancer agents, we aimed at the design and synthesis of a library of tetrasubstituted alkenes. These are structural analogues of tamoxifen, one of the widely used anticancer therapeutics.

Methods: Our small organic compound library was prepared via a chemical synthesis in the solution using the Larock three-component coupling reaction, which is known to tolerate diverse functional groups.

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Highly hydrophobic calixarene polymers for efficient enrichment of polar nitrobenzene compounds.

Talanta

January 2025

Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China; School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou, 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.

Macrocyclic polymer materials exhibit excellent selectivity and adsorption performance in pollutant adsorption due to unique host-guest recognition. Herein, three kinds of calixarene polymers (C4P, C6P and C8P) were synthesized through Sonogashira reaction, and were characterized through H NMR, FT-IR, SEM, and TEM. The water contact angle experiments revealed that three kinds of calixarene polymers were highly hydrophobic, and they all exhibited high enrichment efficiency for weak polar chloro-substituted benzene compounds (chlorobenzene, o-chlorotoluene, p-dichlorobenzene and o-dichlorobenzene) and BTEX (benzene, toluene, ethylbenzene and xylenes).

View Article and Find Full Text PDF

Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles.

Molecules

December 2024

Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.

Bimetallic PdCu nanoparticles with different Pd:Cu ratios and morphologies can be synthesized and immobilized on a variety of support materials. Accordingly, PdCu nanoparticles can be efficiently applied as heterogeneous catalysts in a large number of organic transformations including C-C coupling and cross-coupling reactions. As related to their favorable electronic and structural interactions, the catalytic performances of PdCu bimetallic nanoparticles may be superior to monometallic species.

View Article and Find Full Text PDF

Single-atom heterogeneous catalysts (SACs) are potential, recoverable alternatives to soluble organometallic complexes for cross-coupling reactions in fine-chemical synthesis. When developing SACs for these applications, it is often expected that the need for ligands, which are essential for organometallic catalysts, can be bypassed. Contrary to that, ligands remain almost always required for palladium atoms stabilized on commonly used functionalized carbon and carbon nitride supports, as the catalysts otherwise show limited activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!