PIKfyve, an evolutionarily conserved kinase synthesizing PtdIns5P and PtdIns(3,5)P2, is crucial for mammalian cell proliferation and viability. Accordingly, PIKfyve inhibitors are now in clinical trials as anti-cancer drugs. Among those, apilimod is the most promising, yet its potency to inhibit PIKfyve and affect endomembrane homeostasis is only partially characterized. We demonstrate here for the first time that apilimod powerfully inhibited in vitro synthesis of PtdIns5P along with that of PtdIns(3,5)P2. HPLC-based resolution of intracellular phosphoinositides (PIs) revealed that apilimod triggered a marked reduction of both lipids in the context of intact cells. Notably, there was also a profound rise in PtdIns3P resulting from arrested PtdIns3P consumption for PtdIns(3,5)P2 synthesis. As typical for PIKfyve inhibition and the concomitant PtdIns(3,5)P2 reduction, apilimod induced the appearance of dilated endomembrane structures in the form of large translucent cytoplasmic vacuoles. Remarkably, bafilomycin A1 (BafA1) fully reversed the aberrant cell phenotype back to normal and completely precluded the appearance of cytoplasmic vacuoles when added prior to apilimod. Inspection of the PI profiles ruled out restoration of the reduced PtdIns(3,5)P2 pool as a molecular mechanism underlying BafA1 rescue. Rather, we found that BafA1 markedly attenuated the PtdIns3P elevation under PIKfyve inhibition. This was accompanied by profoundly decreased endosomal recruitment of fusogenic EEA1. Together, our data demonstrate that apilimod inhibits not only PtdIns(3,5)P2 but also PtdIns5P synthesis and that the cytoplasmic vacuolization triggered by the inhibitor is precluded or reversed by BafA1 through a mechanism associated, in part, with reduction in both PtdIns3P levels and EEA1 membrane recruitment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150535PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204532PLOS

Publication Analysis

Top Keywords

ptdins35p2 ptdins5p
8
ptdins5p synthesis
8
ptdins5p ptdins35p2
8
pikfyve inhibition
8
cytoplasmic vacuoles
8
apilimod
7
ptdins35p2
7
pikfyve
6
apilimod candidate
4
candidate anticancer
4

Similar Publications

Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.

View Article and Find Full Text PDF

Although early prostate cancer depends on the androgen receptor signaling pathway, which is predominant in luminal cells, there is much to be understood about the contribution of epithelial basal cells in cancer progression. Herein, we observe cell type-specific differences in the importance of the metabolic enzyme phosphatidylinositol 5-phosphate 4-kinase alpha (PI5P4Kα; gene name PIP4K2A) in the prostate epithelium. We report the development of a basal cell-specific genetically engineered mouse model targeting Pip4k2a alone or in combination with the tumor suppressor phosphatase and tensin homolog (Pten).

View Article and Find Full Text PDF

An internal linker and pH biosensing by phosphatidylinositol 5-phosphate regulate the function of the ESCRT-0 component TOM1.

Structure

October 2024

Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:

Article Synopsis
  • - The study explores how Target of Myb1 (TOM1) helps transport ubiquitinated proteins to lysosomes for degradation, revealing that a specific region near TOM1 enhances its binding to ubiquitin and can be altered through phosphorylation.
  • - Researchers found that TOM1 acts as an effector for a lipid called phosphatidylinositol 5-phosphate (PtdIns5P) during infections from Shigella flexneri, with its binding to PtdIns5P being influenced by pH levels.
  • - The findings suggest that during Shigella infection, the acidic environment affects TOM1's ability to bind ubiquitin, which hinders endosomal maturation and protein degradation, thus aiding bacterial survival by accumulating TOM1
View Article and Find Full Text PDF

Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two common diseases that affect the elderly population worldwide. The identification of common genes associated with AD and T2DM holds promise for potential biomarkers and intriguing pathogenesis of these two complicated diseases. This study utilized a comprehensive approach by integrating transcriptome data from multiple cohorts, encompassing both AD and T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!