DNA polymerase β (pol β) fills single nucleotide gaps in DNA during base excision repair and non-homologous end-joining. Pol β must select the correct nucleotide from among a pool of four nucleotides with similar structures and properties in order to maintain genomic stability during DNA repair. Here, we use a combination of X-ray crystallography, fluorescence resonance energy transfer and nuclear magnetic resonance to show that pol β's ability to access the appropriate conformations both before and upon binding to nucleotide substrates is integral to its fidelity. Importantly, we also demonstrate that the inability of the I260Q mutator variant of pol β to properly navigate this conformational landscape results in error-prone DNA synthesis. Our work reveals that precatalytic conformational rearrangements themselves are an important underlying mechanism of substrate selection by DNA pol β.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237750PMC
http://dx.doi.org/10.1093/nar/gky825DOI Listing

Publication Analysis

Top Keywords

dna polymerase
8
precatalytic conformational
8
conformational rearrangements
8
dna
5
pol
5
i260q dna
4
polymerase highlights
4
highlights precatalytic
4
rearrangements critical
4
critical fidelity
4

Similar Publications

Objective: Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies.

View Article and Find Full Text PDF

Small molecules targeting the eubacterial β-sliding clamp discovered by combined and screening approaches.

J Enzyme Inhib Med Chem

December 2025

Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.

Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets.

View Article and Find Full Text PDF

Background: Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR).

View Article and Find Full Text PDF

Genetic manipulation of bacteriophage T4 utilizing the CRISPR-Cas13b system.

Front Genome Ed

December 2024

Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.

CRISPR-Cas type II and type V systems are inefficient in modifying bacteriophage T4 genome, due to hypermodification of its DNA. Here, we present a genome editing technique for bacteriophage T4 using the type VI CRISPR-Cas system. Using BzCas13b targeting of T4 phage, we were able to individually delete both T4 glucosyl transferase genes, and .

View Article and Find Full Text PDF

Herpes simplex virus (HSV) encephalitis is a life-threatening consequence of HSV infection of the central nervous system. Early antiviral therapy is most effective, necessitating prompt diagnosis. We report a case of atypical HSV encephalitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!