Quantitative trait locus (QTL) mapping of molecular phenotypes such as metabolites, lipids and proteins through genome-wide association studies represents a powerful means of highlighting molecular mechanisms relevant to human diseases. However, a major challenge of this approach is to identify the causal gene(s) at the observed QTLs. Here, we present a framework for the 'Prioritization of candidate causal Genes at Molecular QTLs' (ProGeM), which incorporates biological domain-specific annotation data alongside genome annotation data from multiple repositories. We assessed the performance of ProGeM using a reference set of 227 previously reported and extensively curated metabolite QTLs. For 98% of these loci, the expert-curated gene was one of the candidate causal genes prioritized by ProGeM. Benchmarking analyses revealed that 69% of the causal candidates were nearest to the sentinel variant at the investigated molecular QTLs, indicating that genomic proximity is the most reliable indicator of 'true positive' causal genes. In contrast, cis-gene expression QTL data led to three false positive candidate causal gene assignments for every one true positive assignment. We provide evidence that these conclusions also apply to other molecular phenotypes, suggesting that ProGeM is a powerful and versatile tool for annotating molecular QTLs. ProGeM is freely available via GitHub.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326795PMC
http://dx.doi.org/10.1093/nar/gky837DOI Listing

Publication Analysis

Top Keywords

causal genes
20
candidate causal
16
genes molecular
8
quantitative trait
8
molecular phenotypes
8
annotation data
8
molecular qtls
8
causal
7
molecular
7
progem
6

Similar Publications

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

Chemokine (C-X3-C motif) Receptor 1 (CX3CR1) primarily mediates the chemotaxis and adhesion of immune cells. However, its role in hepatitis C virus (HCV)-induced early-stage liver cirrhosis remains unexplored. GSE15654 was downloaded from the GEO database.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!