Extensive evaluation of the generalized relevance network approach to inferring gene regulatory networks.

Gigascience

Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.

Published: November 2018

Background: The generalized relevance network approach to network inference reconstructs network links based on the strength of associations between data in individual network nodes. It can reconstruct undirected networks, i.e., relevance networks, sensu stricto, as well as directed networks, referred to as causal relevance networks. The generalized approach allows the use of an arbitrary measure of pairwise association between nodes, an arbitrary scoring scheme that transforms the associations into weights of the network links, and a method for inferring the directions of the links. While this makes the approach powerful and flexible, it introduces the challenge of finding a combination of components that would perform well on a given inference task.

Results: We address this challenge by performing an extensive empirical analysis of the performance of 114 variants of the generalized relevance network approach on 47 tasks of gene network inference from time-series data and 39 tasks of gene network inference from steady-state data. We compare the different variants in a multi-objective manner, considering their ranking in terms of different performance metrics. The results suggest a set of recommendations that provide guidance for selecting an appropriate variant of the approach in different data settings.

Conclusions: The association measures based on correlation, combined with a particular scoring scheme of asymmetric weighting, lead to optimal performance of the relevance network approach in the general case. In the two special cases of inference tasks involving short time-series data and/or large networks, association measures based on identifying qualitative trends in the time series are more appropriate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420648PMC
http://dx.doi.org/10.1093/gigascience/giy118DOI Listing

Publication Analysis

Top Keywords

relevance network
16
network approach
16
generalized relevance
12
network inference
12
network
10
network links
8
relevance networks
8
scoring scheme
8
tasks gene
8
gene network
8

Similar Publications

Predicting transcriptional changes induced by molecules with MiTCP.

Brief Bioinform

November 2024

Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.

Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.

View Article and Find Full Text PDF

Background: Individuals with hearing impairments may face hindrances in health care assistance, which may significantly impact the prognosis and the incidence of complications and iatrogenic events. Therefore, the development of automatic communication systems to assist the interaction between this population and health care workers is paramount.

Objective: This study aims to systematically review the evidence on communication systems using human-computer interaction techniques developed for deaf people who communicate through sign language that are already in use or proposed for use in health care contexts and have been tested with human users or videos of human users.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.

Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.

View Article and Find Full Text PDF

Importance: Many physician groups are in 2-sided risk payment arrangements with Medicare Advantage plans (at-risk MA). Analysis of quality and health resource use under such arrangements may inform ongoing Medicare policy concerning payment and service delivery.

Objective: To compare quality and efficiency measures under 2 payment models: at-risk MA and fee-for-service (FFS) MA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!