This article formulates the operating rooms considering several constraints of the real world, such as decision-making styles, multiple stages for surgeries, time windows for resources, and specialty and complexity of surgery. Based on planning, surgeries are assigned to the working days. Then, the scheduling part determines the sequence of surgeries per day. Moreover, an integrated fuzzy possibilistic-stochastic mathematical programming approach is applied to consider some sources of uncertainty, simultaneously. Net revenues of operating rooms are maximized through the first objective function. Minimizing a decision-making style inconsistency among human resources and maximizing utilization of operating rooms are considered as the second and third objectives, respectively. Two popular multi-objective meta-heuristic algorithms including Non-dominated Sorting Genetic Algorithm and Multi-Objective Particle Swarm Optimization are utilized for solving the developed model. Moreover, different comparison metrics are applied to compare the two proposed meta-heuristics. Several test problems based on the data obtained from a public hospital located in Iran are used to display the performance of the model. According to the results, Non-dominated Sorting Genetic Algorithm-II outperforms the Multi-Objective Particle Swarm Optimization algorithm in most of the utilized metrics. Moreover, the results indicate that our proposed model is more effective and efficient to schedule and plan surgeries and assign resources than manual scheduling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0954411918794721 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!