Plant functional traits regulate ecosystem functions but little is known about how co-occurring gradients of land use and edaphic conditions influence their expression. We test how gradients of logging disturbance and soil properties relate to community-weighted mean traits in logged and old-growth tropical forests in Borneo. We studied 32 physical, chemical and physiological traits from 284 tree species in eight 1 ha plots and measured long-term soil nutrient supplies and plant-available nutrients. Logged plots had greater values for traits that drive carbon capture and growth, whilst old-growth forests had greater values for structural and persistence traits. Although disturbance was the primary driver of trait expression, soil nutrients explained a statistically independent axis of variation linked to leaf size and nutrient concentration. Soil characteristics influenced trait expression via nutrient availability, nutrient pools, and pH. Our finding, that traits have dissimilar responses to land use and soil resource availability, provides robust evidence for the need to consider the abiotic context of logging when predicting plant functional diversity across human-modified tropical forests. The detection of two independent axes was facilitated by the measurement of many more functional traits than have been examined in previous studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.15444 | DOI Listing |
Malays J Pathol
December 2024
Universiti Tunku Abdul Rahman, M. Kandiah Faculty of Medicine and Health Sciences, Department of Pre-clinical Sciences, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.
Introduction: The current first-line therapy for nasopharyngeal carcinoma (NPC) is often associated with long-term complications. Oncolytic measles virus (MV) therapy offers a promising alternative to cancer therapy. This study aims to investigate the efficacy of MV in killing NPC cells in vitro, both with or without resistance to radiation and drug therapy.
View Article and Find Full Text PDFPlant Commun
December 2024
Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan' Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating the leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling.
View Article and Find Full Text PDFBackground And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.
Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.
BMC Plant Biol
December 2024
Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China.
Background: Fruit size is a crucial economic trait that impacts the quality of jujube (Ziziphus jujuba), however, research in this area remains limited. This study utilized two jujube cultivars with similar genetic backgrounds but differing fruit sizes to investigate the regulatory mechanisms affecting fruit size through cytological observations, transcriptome sequencing, and heterologous overexpression.
Results: The findings reveal that variations in mesocarp cell numbers during early fruit development significantly influence final fruit size.
BMC Plant Biol
December 2024
College of Life Science and Technology, Harbin Normal University, Harbin, China.
Background: Lavandula angustifolia Mill., a valuable aromatic plant, often encounters low temperature stress during its growth in Northeast China. Understanding the mechanisms behind its resistance to low temperatures is essential for enhancing this trait.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!