Debate and deliberation surrounding climate change has shifted from mitigation toward adaptation, with much of the adaptation focus centered on adaptive practices, and infrastructure development. However, there is little research assessing expected impacts, potential benefits, and design challenges that exist for reducing vulnerability to expected climate impacts. The uncertainty of design requirements and associated government policies, and social structures that reflect observed and projected changes in the intensity, duration, and frequency of water-related climate events leaves communities vulnerable to the negative impacts of potential flood and drought. The results of international research into how agricultural infrastructure features in current and planned adaptive capacity of rural communities in Argentina, Canada, and Colombia indicate that extreme hydroclimatic events, as well as climate variability and unpredictability are important for understanding and responding to community vulnerability. The research outcomes clearly identify the need to deliberately plan, coordinate, and implement infrastructures that support community resiliency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244986 | PMC |
http://dx.doi.org/10.1007/s00267-018-1104-8 | DOI Listing |
J Mol Med (Berl)
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil. Electronic address:
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS).
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Botany, University of Wisconsin-Madison, Madison, 53706, WI, USA.
Premise: Five C grasses (Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Sorghastrum nutans, Spartina pectinata) dominate different portions of a moisture gradient from dry to wet tallgrass prairies in the Upper Midwest of the United States. We hypothesized that their distributions may partly reflect differences in flooding tolerance and context-specific growth relative to each other.
Methods: We tested these ideas with greenhouse flooding and drought experiments, outdoor mesocosm experiments, and a natural experiment involving a month-long flood in two wet-mesic prairies.
Sci Data
January 2025
Department of Civil, Construction and Environmental Engineering, University of Alabama, AL, Tuscaloosa, USA.
High quality baseflow data is important for advancing water resources modeling and management, as it captures the critical role of groundwater and delayed sources in contributing to streamflow. Baseflow is the main recharge source of runoff during the dry period, particularly in understanding the interaction between surface water and groundwater systems. This study focuses on estimating baseflow using deep learning algorithms that enhance the estimation capabilities in both gauged and ungauged basins.
View Article and Find Full Text PDFMicroorganisms
November 2024
State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!