In the present study, silver and gold nanoparticles (AgNPs and AuNPs) were green synthesised using the aqueous plant extract of Stemona tuberosa Lour. When plant extract was mixed with AgNO and HAuCl solutions in separate reactions, the amalgamated solutions turned deep reddish brown and dark purple in colour after 48 h indicating the formation of AgNPs and AuNPs. UV-Visible analysis of green synthesised AgNPs and AuNPs have shown absorption maximum at 443.85 nm and 539.72 respectively after 48 h. Energy dispersive X-ray spectroscopy (EDX) analysis confirmed the presence of pure silver in the green synthesised AgNPs and pure gold in the plant-mediated AuNPs. X-ray diffractometer (XRD) data revealed the face-centred cubic nature of AgNPs. Fluorescence transmission infrared (FTIR) spectrum has shown the characteristic peaks of different phytochemicals in the plant extract which acted as stabilising or capping agents of AgNPs. Scanning electron microscopy (SEM) analysis of AgNPs and AuNPs revealed that the nanoparticles are monodispersed. Transmission electron microscopy (TEM) studies revealed that AgNPs were mostly spherical with an average size of 25 nm whereas selected area electron diffraction (SAED) analysis confirmed their crystalline nature. Both AgNPs and AuNPs of S. tuberosa Lour have shown potential catalytic activity in the presence of sodium borohydride (NaBH) in the degradation and removal of 4-nitrophenol, methylene blue, methyl orange and methyl red.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3105-9DOI Listing

Publication Analysis

Top Keywords

agnps aunps
20
tuberosa lour
12
green synthesised
12
plant extract
12
agnps
9
silver gold
8
gold nanoparticles
8
stemona tuberosa
8
catalytic activity
8
synthesised agnps
8

Similar Publications

Biosynthesis, Characterization, and Antibacterial Activity of Gold, Silver, and Bimetallic Nanoparticles Using L. Leaves.

Antibiotics (Basel)

December 2024

Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.

The utilization of nano-sized drug delivery systems in herbal drug delivery systems has a promising future for improving drug effectiveness and overcoming issues connected with herbal medicine. As a consequence, the use of nanocarriers as novel drug delivery systems for the improvement of traditional medicine is critical to combating infectious diseases globally. In line with this, we herein report the biosynthesis of silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and bimetallic nanoparticles (BMNPs) as antibacterial agents against pathogenic bacterial strains using L.

View Article and Find Full Text PDF

This study has successfully prepared three kinds of surface enhanced raman scattering (SERS) substrates, namely AgNP/CuNPs/Bragg-PSi (porous silicon, PSi), AgNPs/CuNPs/PSi and AuNPs/CuNPs/Bragg-PSi by use of an anode electrochemical etching method and a dip plating method. Results show that: the AgNPs/CuNPs/Bragg-PSi substrate has optimal SERS performance and is capable of detecting the Raman spectrum ( = 0.9315) of a 10 M-10 M crystal violet (CV) solution.

View Article and Find Full Text PDF

Bactericidal activity of gold and silver nanoparticles in solution and supported on polyhihydroxybutyrate nanospheres.

Int J Biol Macromol

January 2025

Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:

This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.

View Article and Find Full Text PDF

A highly sensitive facile plasmonic scheme for assessment of melamine in raw milk.

Anal Methods

December 2024

Applied Optics and Photonics Research Laboratory, Department of Physics, Tezpur University, Napaam, Tezpur, Assam-784028, India.

This work presents two novel devices with a microcontroller and two different light sensors, namely, Light Dependent Resistor (LDR) and Ambient Light Sensor (ALS), which can provide a quantitative output from the colorimetric variations of citrate capped borohydride reduced silver nanoparticles (AgNPs) and citrate capped gold nanoparticles (AuNPs) upon addition of melamine adulterated milk. The limit of detection (LOD) of the LDR setup with AgNPs and AuNPs was found to be 1.24 ppm and 1.

View Article and Find Full Text PDF

Selective aptasensor of deoxynivalenol based on dual signal enhancement of thionine electrochemistry using silver nanoparticle-loaded label at gold nanoparticle-loaded electrodes.

Bioelectrochemistry

December 2024

School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China. Electronic address:

In this work, an efficient sensing platform deoxynivalenol (DON) detection was constructed through monitoring the current change of a competitive mechanism triggered by DON, leading the signal label detached from the electrode surface by square-wave voltammetry using thionine (Thi) as a redox indicator. The complementary strand of aptamer (cDNA) and Thi were loaded onto Fe/Ni bimetallic metal-organic framework loaded with sliver nanoparticles (AgNPs@FeNi-MOF) to construct AgNPs@FeNi-MOF/cDNA/Thi signal probes. In the presence of DON, the aptamer sequence was more predisposed to form an aptamer-DON complex, resulting in the displacement of the cDNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!