Decomposition kinetics of stabilised CH2OO and CD2OO Criegee intermediates have been investigated as a function of temperature (450-650 K) and pressure (2-350 Torr) using flash photolysis coupled with time-resolved cavity-enhanced broadband UV absorption spectroscopy. Decomposition of CD2OO was observed to be faster than CH2OO under equivalent conditions. Production of OH radicals following CH2OO decomposition was also monitored using flash photolysis with laser-induced fluorescence (LIF), with results indicating direct production of OH in the v = 0 and v = 1 states in low yields. Master equation calculations performed using the Master Equation Solver for Multi-Energy well Reactions (MESMER) enabled fitting of the barriers for the decomposition of CH2OO and CD2OO to the experimental data. Parameterisations of the decomposition rate coefficients, calculated by MESMER, are provided for use in atmospheric models and implications of the results are discussed. For CH2OO, the MESMER fits require an increase in the calculated barrier height from 78.2 kJ mol-1 to 81.8 kJ mol-1 using a temperature-dependent exponential down model for collisional energy transfer with ΔEdown = 32.6(T/298 K)1.7 cm-1 in He. The low- and high-pressure limit rate coefficients are k1,0 = 3.2 × 10-4(T/298)-5.81exp(-12 770/T) cm3 s-1 and k1,∞ = 1.4 × 1013(T/298)0.06exp(-10 010/T) s-1, with median uncertainty of ∼12% over the range of experimental conditions used here. Extrapolation to atmospheric conditions yields k1(298 K, 760 Torr) = 1.1+1.5-1.1 × 10-3 s-1. For CD2OO, MESMER calculations result in ΔEdown = 39.6(T/298 K)1.3 cm-1 in He and a small decrease in the calculated barrier to decomposition from 81.0 kJ mol-1 to 80.1 kJ mol-1. The fitted rate coefficients for CD2OO are k2,0 = 5.2 × 10-5(T/298)-5.28exp(-11 610/T) cm3 s-1 and k2,∞ = 1.2 × 1013(T/298)0.06exp(-9800/T) s-1, with overall error of ∼6% over the present range of temperature and pressure. The extrapolated k2(298 K, 760 Torr) = 5.5+9.2-5.5 × 10-3 s-1. The master equation calculations for CH2OO indicate decomposition yields of 63.7% for H2 + CO2, 36.0% for H2O + CO and 0.3% for OH + HCO with no significant dependence on temperature between 400 and 1200 K or pressure between 1 and 3000 Torr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp05332d | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA.
Inferring underlying microscopic dynamics from low-dimensional experimental signals is a central problem in physics, chemistry, and biology. As a trade-off between molecular complexity and the low-dimensional nature of experimental data, mesoscopic descriptions such as the Markovian master equation are commonly used. The states in such descriptions usually include multiple microscopic states, and the ensuing coarse-grained dynamics are generally non-Markovian.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Vorobyovy Gory 1, Moscow, 119991, Russia.
We investigate the quantum correlation between light and matter in bipartite quantum systems, drawing on the Jaynes-Cummings model and the Tavis-Cummings model, which are well-established in cavity quantum electrodynamics. Through the resolution of the quantum master equation, we can derive the dissipative dynamics in open systems. To assess the extent of quantum correlation, several measures are introduced: von Neumann entropy, concurrence and quantum discord.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.
View Article and Find Full Text PDFWe study Hopfield networks with non-reciprocal coupling inducing switches between memory patterns. Dynamical phase transitions occur between phases of no memory retrieval, retrieval of multiple point-attractors, and limit-cycle attractors. The limit cycle phase is bounded by two critical regions: a Hopf bifurcation line and a fold bifurcation line, each with unique dynamical critical exponents and sensitivity to perturbations.
View Article and Find Full Text PDFJ Robot Surg
January 2025
Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, Guangdong, China.
This study applied cumulative sum (CUSUM) analysis to evaluate trends in operative time and blood loss, It aims to identify key milestones in mastering extraperitoneal single-site robotic-assisted radical prostatectomy (ss-RARP). A cohort of 100 patients who underwent ss-RARP, performed by a single surgeon at the First Affiliated Hospital of Guangzhou Medical University between March 2021 and June 2023, was retrospectively analyzed. To evaluate the learning curve, the CUSUM (Cumulative Sum Control Chart) technique was applied, revealing the progression and variability over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!