We report the identification of 47 foxtail millet ( (L.) P. Beauv.) seed storage proteins (SSPs) consisting of 14 albumins, 12 prolamins, 18 globulins and 3 glutelins using computational approaches and compared their essential amino acid composition with 225 SSPs of rice, barley, sorghum and maize. Comparative analysis revealed several unique foxtail millet SSPs containing high amounts of essential amino acids. These include three 2s-albumin proteins containing 11.9%, 10.9%, 9.82% lysine, one 10-kDa prolamin containing 20% methionine residues and one each 7S-globulin, 10-kDa prolamin, alpha-zein proteins containing 9.2% threonine, 9.35% phenylalanine and 2.5% tryptophan, respectively. High lysine containing albumins and high methionine containing prolamins were also detected in other cereals indicating that these SSPs are widespread in cereals. Phylogenetic studies revealed that the foxtail millet SSPs are closer to sorghum and maize. The lysine-rich albumins and the methionine-rich prolamins formed a separate cluster. Motif analysis of lysine-rich albumins displayed several lysine containing conserved motifs across cereals including foxtail millet. The 10-kDa prolamin protein containing 20% methionine was unique as it lacked the characteristic repeat motifs of methionine found in the high methionine containing zeins and kafirins. The motif "NPAAFQQQQLL" was uniquely repeated in the foxtail millet high tryptophan prolamin protein. The findings of the present study provide new insights in foxtail millet seed storage protein characterization and their nutritional importance in terms of essential amino acid composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141389PMC
http://dx.doi.org/10.1007/s13205-018-1431-8DOI Listing

Publication Analysis

Top Keywords

foxtail millet
28
seed storage
12
essential amino
12
10-kda prolamin
12
storage proteins
8
proteins ssps
8
millet beauv
8
amino acid
8
acid composition
8
sorghum maize
8

Similar Publications

Climate change has exacerbated precipitation variability, profoundly impacting vegetation dynamics and community structures in arid ecosystems. There remains a notable knowledge gap regarding the ecological effects of altered precipitation on crassulacean acid metabolism (CAM) plants and their interactions with other photosynthetic types. This study investigated the response of the typical obligate CAM plant Orostachys fimbriata to extended watering intervals (WI4-WI8) and various competitive patterns (M-M) with the C grass Melilotus officinalis and the C grass Setaria viridis through greenhouse experiments.

View Article and Find Full Text PDF

Light is essential for photosynthesis; however, excess light can increase the accumulation of photoinhibitory reactive oxygen species that reduce photosynthetic efficiency. Plants have evolved photoprotective non-photochemical quenching (NPQ) pathways to dissipate excess light energy. In tobacco and soybean (C plants), overexpression of three NPQ genes, e (VDE), (PsbS), and (ZEP), hereafter VPZ, resulted in faster NPQ induction and relaxation kinetics, and increased crop yields in field conditions.

View Article and Find Full Text PDF

Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.

Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!