Peroxiredoxins (Prxs) are ubiquitous antioxidants utilizing a reactive cysteine for peroxide reduction and acting as a molecular chaperone under various stress conditions. Besides other stimulating factors, oxidative- and heat stress conditions trigger their ATP-independent chaperoning function. So far, many studies were intended to reveal the chaperoning mechanisms of the so-called sensitive Prxs of eukaryotes, which are susceptible to inactivation by over-oxidation of its reactive cysteine during HO reduction. In contrast, the chaperone mechanisms of bacterial Prxs, which are mostly robust against inactivation by over-oxidation, are not well understood. Herein, comprehensive biochemical and biophysical studies demonstrate that the Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) acquires chaperone activity under heat stress. Interestingly, their chaperoning activity is independent of its redox-states but is regulated in a temperature-dependent manner. Data are presented, showing that oxidized EcAhpC, which forms dimers at 25 °C, self-assembled into high molecular weight (HMW) oligomers at higher temperatures and supressed aggregation of client proteins at heat-shock conditions. In addition, we unravelled the essential role of the C-terminal tail of EcAhpC on heat-induced HMW oligomer formation and chaperoning activity. Our findings suggest a novel molecular mechanism for bacterial Prxs to function as chaperone at heat-shock conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147784 | PMC |
http://dx.doi.org/10.1038/s41598-018-32527-7 | DOI Listing |
Alzheimers Dement
December 2024
Delaware State University, Dover, DE, USA.
Background: Aggregation of transactive response DNA binding protein 43 (TDP-43) is the major pathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, in up to 50% of Alzheimer's disease (AD) cases TDP-43 pathology was discovered and this pathology has been referred to as limbic-predominant age-related TDP43 encephalopathy (LATE). Several studies reported that TDP-43 binds to heat shock protein family B (small) member 1 (HSPB1 or HSP27) but no functional evaluation of this interaction has been explored.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Sanya Institute of China Agricultural University, Sanya, 572025, China.
High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Rheumatism and Immunology, Tianjin First Central hospital, Tianjin, China.
Autoimmune inner ear disease (AIED) is a rare condition characterized by immune-mediated damage to the inner ear, leading to progressive sensorineural hearing loss (SNHL) and vestibular symptoms such as vertigo and tinnitus. This study investigates the pathogenesis and therapeutic strategies for AIED through the analysis of three cases with different underlying autoimmune disorders: rheumatoid arthritis, relapsing polychondritis, and IgG4-related disease. The etiology of AIED involves complex immunopathological mechanisms, including molecular mimicry and the "bystander effect," with specific autoantibodies, such as those against heat shock protein 70 (HSP70), playing a potential role in cochlear damage.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Department of Biotechnology, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea.
Background: Recombinant proteins produced in the cell factories are used in biological research, pharmaceutical production, and biochemical and agricultural applications. Molecular chaperones, such as heat shock proteins (Hsps), are co-expressed with recombinant proteins to enhance their yield, stability, and activity. When () is used as a cell factory, Hsps are the frequently used co-expression partners.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!