Chemicals and synthetic coatings are widely used to protect steel against corrosion. Bio-based corrosion inhibition strategies can be an alternative in the arising bioeconomy era. To maintain the good state of steel reinforcement in cracked concrete, microbe-based self-healing cementitious composites (MSCC) have been developed. Yet, proposed strategies involve reasonably slow crack filling by biomineralization and thus risk the possible rebar corrosion during crack healing. Here we upgrade the rebar protection to a higher level by combining MSCC with microbial induced corrosion inhibition. Presented NO reducing bacterial granules inhibit rebar corrosion by producing the anodic corrosion inhibitor NO and meanwhile heal a 300-µm-wide crack in 28 days. During 120 days exposure to 0.5 M Cl solution, the rebars in cracked MSCC keep showing open circuit potentials above the critical value of -250 mV and they lose less than 2% of the total rebar material which corresponds to half the material loss in cracked plain mortar. Overall, the obtained rebar protection performance is comparable with that of uncracked mortar and mortar containing chemical inhibitor, hence the microbe-based system becomes an alternative to the traditional methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148264 | PMC |
http://dx.doi.org/10.1038/s41598-018-32463-6 | DOI Listing |
Langmuir
January 2025
Department of Physics and Astronomy College of Science, King Saud University, P. O.Box 2455, Riyadh 11451, Saudi Arabia.
A novel and eco-friendly route to synthesize boron, nitrogen codoped carbon dots using aniline, citric acid, and boric acid as precursor materials has been used successfully to reduce mild steel corrosion. This report describes the detailed weight-loss experiments, electrochemical measurements, and surface morphology analysis conducted to explore the efficacy of B,N-CDs as a highly effective corrosion controller for mild steel (MS) protection in 15% hydrochloric acid (HCl). The findings specify that B,N-CDs significantly decreased the corrosion of MS and attained an inhibition capacity of up to 96.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laboratoire de Génie Chimique, CNRS, INPT, UPS, Université de Toulouse, Toulouse 31432, France.
This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, μ-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al-Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, Guangdong, China.
Formamidinium-based perovskites (FA perovskites) often incorporate methylammonium chloride (MACl) to stabilize the α-FAPbI phase and prevent formation of the δ phase. However, MACl undergoes deprotonation and reacts with FA, leading to the generation of unstable byproducts that can cause component degradation and negatively impact the device performance. In this study, we introduce ethylenediaminetetramethylenephosphonic acid as a corrosion inhibitor, which effectively prevents the formation of these byproducts and stabilizes α-FAPbI.
View Article and Find Full Text PDFSci Rep
January 2025
LCEA Laboratory, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco.
In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India. Electronic address:
Corrosion is a significant issue affecting industrial metal surfaces, resulting in material degradation, economic losses, and safety concerns. This review comprehensively examines chitosan and its nano and bionanocomposite forms as sustainable, eco-friendly corrosion inhibitors, emphasizing key innovations in their development and application. The article highlights chitosan's ability to form protective films, which inhibit corrosion by creating a barrier on metal surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!