Development of immunotherapy, especially checkpoint inhibitors, dramatically improved the prognosis of some malignancies. However, problems on the occurrence of severe adverse effects and limited responses to these checkpoint inhibitors remain. Recently, tumor infiltrating lymphocytes(TILs)are the predictive markers of immunotherapies based on clinical evidence. The proportion of cytotoxic T cells in the tumor has been reported to affect the antitumor effect. TILs in the tumor are thought to be controlled by the interaction between cancer and tumor microenvironment. As a cause of tumor immunosuppression, cancer-associated fibroblasts(CAFs)play the main role in the tumor microenvironment. We considered the strong involvement of tumor microenvironment, particularly the role of CAFs, and reported the interaction between CAFs and proliferation, invasion, angiogenesis, and resistance in the conventional therapy. The correlation between CAFs and tumor immunity and the immunosuppression promoted by CAFs were also evaluated. Their effects will be reported in our future studies.
Download full-text PDF |
Source |
---|
J Med Chem
January 2025
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States.
AMP-activated protein kinase (AMPK) is a central mediator of cellular metabolism and is activated in direct response to low ATP levels. Activated AMPK inhibits anabolic pathways and promotes catabolic activities that generate ATP through the phosphorylation of multiple target substrates. AMPK is a therapeutic target for activation in several chronic metabolic diseases, and there is increasing interest in targeting AMPK activity in cancer where it can act as a tumor suppressor or conversely it can support cancer cell survival.
View Article and Find Full Text PDFCancer Res
January 2025
Swiss Federal Institute of technology in Lausanne, Lausanne, Vaud, Switzerland.
A recent publication by Bornes and colleagues explored the impact of the estrous cycle on mammary tumor response to neoadjuvant chemotherapy (NAC). Using genetically engineered mouse models, Bornes and colleagues revealed that chemotherapy is less effective when initiated during the diestrus stage compared to during the estrus stage. A number of changes during diestrous were identified that may reduce chemosensitivity of mammary tumors: an increased mesenchymal state of breast cancer cells during diestrous, decreased blood vessel diameters, and higher numbers of macrophages in the tumor microenvironment.
View Article and Find Full Text PDFColorectal cancer (CRC) is the second leading cause of cancer-related mortality globally. While immunotherapeutic approaches are effective in a subset of CRC patients, the majority of CRC cases receive limited benefits from immunotherapy. This study developed an immune subtype classification system based on diverse immune cells and pathways.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies.
View Article and Find Full Text PDFBiomacromolecules
January 2025
College of Chemistry, Sichuan University, Chengdu 610064, PR China.
Reactive oxygen species (ROS)-sensitive polymers are extensively used in cancer therapies. However, the ROS levels in the tumor microenvironment are often insufficient to trigger an adequate therapeutic response. Herein, we report a cinnamaldehyde ()-based ROS-responsive cationic polymer () and demonstrate its high efficiency in gene delivery and tumor cell growth inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!