Evidence for the Regulation of Gynoecium Morphogenesis by via Cell Wall Dynamics.

Plant Physiol

Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon cedex 07, France

Published: November 2018

() is an atypical member of the AUXIN RESPONSE FACTOR family of transcription factors that plays a crucial role in tissue patterning in the Arabidopsis () gynoecium. Though recent insights have provided valuable information on ETT's interactions with other components of auxin signaling, the biophysical mechanisms linking ETT to its ultimate effects on gynoecium morphology were until now unknown. Here, using techniques to assess cell-wall dynamics during gynoecium growth and development, we provide a coherent body of evidence to support a model in which ETT controls the elongation of the valve tissues of the gynoecium through the positive regulation of pectin methylesterase (PME) activity in the cell wall. This increase in PME activity results in an increase in the level of demethylesterified pectins and a consequent reduction in cell wall stiffness, leading to elongation of the valves. Though similar biophysical mechanisms have been shown to act in the stem apical meristem, leading to the expansion of organ primordia, our findings demonstrate that regulation of cell wall stiffness through the covalent modification of pectin also contributes to tissue patterning within a developing plant organ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236608PMC
http://dx.doi.org/10.1104/pp.18.00745DOI Listing

Publication Analysis

Top Keywords

cell wall
16
tissue patterning
8
biophysical mechanisms
8
pme activity
8
wall stiffness
8
gynoecium
5
evidence regulation
4
regulation gynoecium
4
gynoecium morphogenesis
4
cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!