Synaptic and intrinsic plasticity in the ventral tegmental area after chronic cocaine.

Curr Opin Neurobiol

Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, US National Institutes of Health, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, School of Medicine, Washington, DC, USA; Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD, USA. Electronic address:

Published: February 2019

AI Article Synopsis

  • Cocaine exposure leads to long-lasting changes in how dopamine neurons in the ventral tegmental area (VTA) communicate and function.
  • Despite advances in studying these changes, effective treatments for cocaine addiction are still unavailable.
  • The review focuses on understanding the interaction between synaptic and intrinsic changes in neurons, which could aid in creating new therapies for addiction.

Article Abstract

Cocaine exposure induces persistent changes in synaptic transmission and intrinsic properties of ventral tegmental area (VTA) dopamine neurons. Despite significant progress in understanding cocaine-induced plasticity, an effective treatment of cocaine addiction is lacking. Chronic cocaine potentiates excitatory and alters inhibitory transmission to dopamine neurons, induces dopamine neuron hyperexcitability, and reduces dopamine release in projection areas. Understanding how intrinsic and synaptic plasticity interact to control dopamine neuron firing and dopamine release could prove useful in the development of new therapeutics. In this review, we examine recent literature discussing cocaine-induced plasticity in the VTA and highlight potential therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131346PMC
http://dx.doi.org/10.1016/j.conb.2018.08.013DOI Listing

Publication Analysis

Top Keywords

ventral tegmental
8
tegmental area
8
chronic cocaine
8
dopamine neurons
8
cocaine-induced plasticity
8
dopamine neuron
8
dopamine release
8
dopamine
6
synaptic intrinsic
4
plasticity
4

Similar Publications

The ventral tegmental area (VTA), a midbrain region associated with motivated behaviors, consists predominantly of dopaminergic (DA) neurons and GABAergic (GABA) neurons. Previous work has suggested that VTA GABA neurons provide a reward prediction, which is used in computing a reward prediction error. In this study, using in vivo electrophysiology and continuous quantification of force exertion in head-fixed mice, we discovered distinct populations of VTA GABA neurons that exhibited precise force tuning independently of learning, reward prediction, and outcome valence.

View Article and Find Full Text PDF

Monosynaptic ventral tegmental area glutamate projections to the locus coeruleus enhance aversive processing.

bioRxiv

December 2024

Department of Anesthesiology, Center for Clinical Pharmacology, Washington University Pain Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.

Distinct excitatory synaptic inputs to the locus coeruleus (LC) modulate behavioral flexibility. Here we identify a novel monosynaptic glutamatergic input to the LC from the ventral tegmental area (VTA). We show robust VTA axonal projections provide direct glutamatergic transmission to LC.

View Article and Find Full Text PDF

Corrigendum to "Role of the ventral tegmental area in general anesthesia" [986(2025) 177145].

Eur J Pharmacol

January 2025

Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.

View Article and Find Full Text PDF

Background And Purpose: Autism spectrum disorder (ASD) is clinically heterogeneous, and resent neuroimaging studies have shown the presence of brain structural heterogeneity in ASD. However, there is currently a lack of evidence for systemic level brain structural heterogeneity. This study aimed to reveal the heterogeneity of brain structural changes at the systemic level in ASD patients through individual differential structural covariance network (IDSCN) analysis.

View Article and Find Full Text PDF

Rapid adaptation to novel environments is crucial for survival, and this ability is impaired in many neuropsychiatric disorders. Understanding neural adaptation to novelty exposure therefore has therapeutic implications. Here, I found that novelty induces time-dependent theta (4-12Hz) oscillatory dynamics in brain circuits including the medial prefrontal cortex (mPFC), ventral hippocampus (vHPC), and ventral tegmental area (VTA), but not dorsal hippocampus (dHPC), as mice adapt to a novel environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!