A cold-water soluble polysaccharide isolated from Grifola frondosa induces the apoptosis of HepG2 cells through mitochondrial passway.

Int J Biol Macromol

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.

Published: March 2019

AI Article Synopsis

  • Grifola frondosa, a popular edible and medicinal mushroom, was found to extract a cold-water-soluble polysaccharide (cGFP) that impacts the growth and death of human liver cancer cells (HepG2).
  • The study revealed that cGFP triggers apoptosis (programmed cell death) in HepG2 cells in a dose-dependent manner, mainly by halting the cell cycle in the S phase and showing distinct apoptotic characteristics under electron microscopy.
  • Mechanistically, cGFP's effect involves a reduction in mitochondrial membrane potential and changes in the expression of apoptosis-related proteins, indicating it works through the mitochondrial pathway by promoting pro-apoptotic factors (Bax) and inhib

Article Abstract

Grifola frondosa is a widely eaten and medicinal fungus. In this study, we extracted a cold-water-soluble polysaccharide from Grifola frondosa (cGFP) and investigated its effects on the proliferation and apoptosis of human hepatoma HepG2 cells. MTT assay showed that cGFP induced apoptosis of HepG2 cells in a dose-dependent manner. Flow cytometry analysis showed that cGFP induced apoptosis in HepG2 cells through S phase arrest. The distribution of cells at different apoptotic stages was determined by Annexin V-FITC and Propidium Iodide (PI) staining. Scanning electron microscopy (SEM) results indicated that cGFP induced typical apoptotic morphological features in HepG2. Mitochondrial membrane potential was reduced according to the screening of JC-1 staining. And western blot analysis of Bax, Bcl-2, cytochrome C (Cyto-c), caspase-3, and caspase-9 further demonstrated that the cGFP-induced apoptosis effect functioned through the mitochondrial pathway. Further analysis by qRT-PCR showed that Bax expression increased and Bcl-2 expression decreased. These findings suggested that cGFP could inhibit the proliferation of HepG2 cells and induce apoptosis mainly through the intrinsic activation mitochondrial pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.09.098DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
20
grifola frondosa
12
apoptosis hepg2
12
cgfp induced
12
induced apoptosis
8
mitochondrial pathway
8
apoptosis
6
hepg2
6
cells
6
cgfp
5

Similar Publications

Anti-Mycobacterial Activity of Bacterial Topoisomerase Inhibitors with Dioxygenated Linkers.

ACS Infect Dis

January 2025

Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States.

Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.

View Article and Find Full Text PDF

Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice.

Int J Mol Med

March 2025

National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.

Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism.

View Article and Find Full Text PDF

Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells.

View Article and Find Full Text PDF

Activation of the De Novo Serine Synthesis Pathway and Disruption of Insulin Signaling Induced by Supplemental SeMet in Vitro.

Biol Trace Elem Res

January 2025

Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.

Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.

View Article and Find Full Text PDF

On-site visual quantification of alkaline phosphatase activity in cells using a smartphone-based approach.

Anal Chim Acta

January 2025

Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.

Alkaline phosphatase (ALP) is a critical biomarker associated with various physiological and pathological processes, making its detection essential for disease diagnosis and biomedical research. In this study, we developed a novel, simple, and portable visual quantification method for ALP activity in cells using an efficient CuZnS nanomaterial with peroxidase-like properties, integrated into a smartphone-based platform for enhanced usability. The CuZnS nanomaterial catalyzes the breakdown of H₂O₂, generating ·OH radicals that oxidize the colorless substrate TMB into blue oxTMB, which is subsequently reduced back to TMB by ascorbic acid (AA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!