Background: Three-dimensional (3D) printing technology is used widely in dentistry for applications including implant surgery, oral and maxillofacial surgery, orthognathic surgery, endodontics and prosthodontics. Using a 3D-printed template makes performing the repair procedure faster and more convenient. The aesthetic restoration of anterior teeth can recover facial beauty, enhance speaking and chewing functions and improve the quality of life of the patient.
Case Presentation: This article describes two kinds of clinical cases including fractured teeth and dental caries. In both, a 3D-printed template was used for direct resin composite restoration of maxillary central incisors. A 3D-printed template was built using the following 3-step process: data acquisition was conducted via intra-oral scanning, virtual modeling was performed using an imaging process, and manufacturing was performed using a 3D printer. Aesthetically restoring the maxillary incisors with the assistance of the 3D-printed template achieved the anticipated results, and the patients were very satisfied with the effect.
Conclusions: The direct resin composite restoration of maxillary central incisors using a 3D-printed template represents a rapid, convenient, aesthetic and functional option for treating maxillary central incisors. A 3D-printed template is therefore an acceptable and reliable alternative to traditional direct composite restoration of maxillary central incisors including fractured teeth and dental caries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6149011 | PMC |
http://dx.doi.org/10.1186/s12903-018-0621-4 | DOI Listing |
J Clin Med
January 2025
Department of Plastic, Aesthetic and Reconstructive Surgery, Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria.
Vascularized bone grafts have been successfully established for complex bone defects. The integration of three-dimensional (3D) simulation and printing technology may aid in more precise surgical planning and intraoperative bone shaping. The purpose of the present study was to describe the implementation and surgical application of this innovative technology for bone reconstruction.
View Article and Find Full Text PDFJ Neurol Surg Rep
January 2025
Department of Neurosurgery, Hospital of the German Armed Forces, Westerstede, Germany.
Although osteosarcomas are the most frequent primary malignant bone tumors, the primary cranial manifestation of this condition is very rare with only a limited number of cases presented in the literature. We present the case of a 20-year-old male patient who underwent single-session surgical intervention for resection of right frontal osteosarcoma with a tailor-made craniotomy and cranioplasty using virtually designed 3D-printed templates and molds. Subsequently, the patient was treated according to the EURAMOS protocol and received adjuvant systemic chemotherapy.
View Article and Find Full Text PDFEur Spine J
January 2025
In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary.
Purpose: The objective of this systematic review is to present a comprehensive summary of existing research on the use of 3D printing in spinal surgery.
Methods: The researchers conducted a thorough search of four digital databases (PubMed, Web of Science, Scopus, and Embase) to identify relevant studies published between January 1999 and December 2022. The review focused on various aspects, including the types of objects printed, clinical applications, clinical outcomes, time and cost considerations, 3D printing materials, location of 3D printing, and technologies utilized.
Hip Int
January 2025
Colorado Joint Replacement, Denver, CO, USA.
Introduction: A primary objective when performing a total hip arthroplasty (THA) is to restore hip biomechanics in accordance with a chosen surgical plan. The aim of this study was to assess the accuracy of a 3D-printed patient-specific guide for delivering a planned femoral osteotomy for both a posterior and an anterior approach.
Methodology: 40 patients (20 anterior and 20 posterior) scheduled for THA received a preoperative work-up allowing for patient-specific implant sizing and positioning.
J Biomed Mater Res B Appl Biomater
January 2025
Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland.
Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!