Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy.

Pharmaceutics

Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.

Published: September 2018

We present here the development of multifunctional doxorubicin (DOX)-conjugated poly(amidoamine) (PAMAM) dendrimers as a unique platform for pH-responsive drug release and targeted chemotherapy of cancer cells. In this work, we covalently conjugated DOX onto the periphery of partially acetylated and folic acid (FA)-modified generation 5 (G5) PAMAM dendrimers through a pH-sensitive -aconityl linkage to form the G5.NHAc-FA-DOX conjugates. The formed dendrimer conjugates were well characterized using different methods. We show that DOX release from the G5.NHAc-FA-DOX conjugates follows an acid-triggered manner with a higher release rate under an acidic pH condition (pH = 5 or 6, close to the acidic pH of tumor microenvironment) than under a physiological pH condition. Both in vitro cytotoxicity evaluation and cell morphological observation demonstrate that the therapeutic activity of dendrimer-DOX conjugates against cancer cells is absolutely related to the DOX drug released. More importantly, the FA conjugation onto the dendrimers allowed a specific targeting to cancer cells overexpressing FA receptors (FAR), and allowed targeted inhibition of cancer cells. The developed G5.NHAc-FA-DOX conjugates may be used as a promising nanodevice for targeted cancer chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160908PMC
http://dx.doi.org/10.3390/pharmaceutics10030162DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
pamam dendrimers
12
g5nhac-fa-dox conjugates
12
ph-responsive drug
8
drug release
8
cancer
6
conjugates
5
doxorubicin-conjugated pamam
4
dendrimers
4
dendrimers ph-responsive
4

Similar Publications

Concomitant Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma and Non-Immunoglobulin M Plasma Cell Neoplasm.

Arch Pathol Lab Med

January 2025

the Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles (Petersen, Stuart, He, Ju, Ghezavati, Siddiqi, Wang).

Context.—: The co-occurrence of plasma cell neoplasm (PCN) and lymphoplasmacytic lymphoma (LPL) is rare, and their clonal relationship remains unclear.

Objective.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Purpose: Glioma is the most prevalent tumor of the central nervous system. The poor clinical outcomes and limited therapeutic efficacy underscore the urgent need for early diagnosis and an optimized prognostic approach for glioma. Therefore, the aim of this study was to identify sensitive biomarkers for glioma.

View Article and Find Full Text PDF

The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.

Cell Mol Life Sci

January 2025

State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.

Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!