Ringspot, caused by the fungus , is a serious disease of crops worldwide. Despite noteworthy progress to reveal the role of glucosinolates in pathogen defense, the host⁻pathogen interaction between cabbage () and has not been fully explored. Here, we investigated the glucosinolate profiles and expression of glucosinolate biosynthesis genes in the ringspot-resistant (R) and susceptible (S) lines of cabbage after infection with . The concomitant rise of aliphatic glucoiberverin (GIV) and indolic glucobrassicin (GBS) and methoxyglucobrassicin (MGBS) was linked with ringspot resistance in cabbage. Pearson's correlation and principle component analysis showed a significant positive association between GIV contents and the expression of the glucosinolate biosynthesis gene and between GBS contents and the expression of the glucosinolate biosynthesis gene . Our results confirmed that infection induces the expression of glucosinolate biosynthesis genes in cabbage, which alters the content of individual glucosinolates. This link between the expression of glucosinolate biosynthesis genes and the accumulation of their respective glucosinolates with the resistance to ringspot extends our molecular sense of glucosinolate-negotiated defense against in cabbage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163659 | PMC |
http://dx.doi.org/10.3390/ijms19092833 | DOI Listing |
Int J Mol Sci
January 2025
Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Horticulture, Hunan Agricultural University, Changsha, China.
Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.
View Article and Find Full Text PDFPhysiol Plant
January 2025
National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India.
Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored.
View Article and Find Full Text PDFYakugaku Zasshi
January 2025
Department of Agriculture, Graduate School of Science and Technology, Shinshu University.
In an aging society, there is a growing interest in functional foods that offer anti-aging benefits. Food-derived bioactive compounds such as carotenoids and polyphenols can enhance skin elasticity and delay aging. However, the mechanisms by which these orally ingested compounds directly impact the skin are not fully understood.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China.
Glucosinolates (GSLs) are important secondary metabolites abundantly distributed in Brassicaceae plants, whose degradation products benefit plant resistance but are regarded as disadvantageous factors for human health. Thus, reducing GSL content is an important goal in the breeding program in crops, such as . In this study, 1280 genes in the GSL pathway were identified from 14 land plant genomes, which are specifically distributed in Brassicaceae and are extensively expanded in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!