The two main subsets of nonalcoholic fatty liver disease (NAFLD) include: (1) nonalcoholic fatty liver (NAFL), the more common and non-progressive subtype; and (2) nonalcoholic steatohepatitis (NASH), the less common subtype, which has the potential to progress to advanced liver damage. Current treatment strategies have focused on lifestyle management of modifiable risk factors, namely weight, and on the optimization of the management of individual components of metabolic syndrome. Various hypothetical pathogenic mechanisms have been proposed, leading to the development of novel drugs with the potential to effectively treat patients with NASH. Numerous clinical trials are ongoing, utilizing these experimental drugs and molecules targeting specific mechanistic pathway(s) to effectively treat NASH. Some of these mechanistic pathways targeted by experimental pharmacologic agents include chemokine receptor 2 and 5 antagonism, inhibition of galectin-3 protein, antagonism of toll-like receptor 4, variation of fibroblast growth factor 19, agonism of selective thyroid hormone receptor-beta, inhibition of apoptosis signal-regulating kinase 1, inhibition of acetyl-coenzyme A carboxylase, agonism of farnesoid X receptor, antibodies against lysl oxidase-like-2, and inhibition of inflammasomes. Emerging data are promising and further updates from ongoing clinical trials are eagerly awaited.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164020PMC
http://dx.doi.org/10.3390/diseases6030083DOI Listing

Publication Analysis

Top Keywords

experimental drugs
8
nonalcoholic fatty
8
fatty liver
8
effectively treat
8
clinical trials
8
mechanistic pathways
8
emerging therapeutic
4
therapeutic targets
4
targets experimental
4
drugs treatment
4

Similar Publications

Around one-quarter of all patients undergoing cardiac procedures, particularly those on cardiopulmonary bypass, develop cardiac surgery-associated acute kidney injury (CSA-AKI). This complication increases the risk of several serious morbidities and of mortality, representing a significant burden for both patients and the healthcare system. Patients with diminished kidney function before surgery, such as those with chronic kidney disease, are at heightened risk of developing CSA-AKI and have poorer outcomes than patients without preexisting kidney injury who develop CSA-AKI.

View Article and Find Full Text PDF

Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown.

View Article and Find Full Text PDF

Strychni Semen is the dried ripe seeds of the plant Strychnos nux-vomica L, and has great medicinal value and developmental potential.However, Strychni Semen is severely toxic, with adverse effects on the central nervous system, urinary system, and other organ systems, and severe cases can be life-threatening. The present study was to reveal the mechanism of nephrotoxicity induced by Strychni Semen and its alkaloid components using experiments.

View Article and Find Full Text PDF

Unveiling the drug delivery mechanism of graphene oxide dots at the atomic scale.

J Control Release

January 2025

Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:

Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.

View Article and Find Full Text PDF

NOTCH and IGF1 signaling systems are involved in the effects exerted by anthelminthic treatment of heifers on the bovine mammary gland.

Vet Parasitol

January 2025

Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina. Electronic address:

Dairy heifers with gastrointestinal nematodes have reduced growth rates, and delayed age at puberty and milk production onset related to late mammary gland development. IGF1 and Notch signaling systems are important in this process, and an altered profile of serum IGF1 has been associated with the detrimental effect of the nematodes on parenchymal development. In this context, we aimed to study the molecular mechanisms involved in bovine mammary gland development around pre and postpuberty, focusing on proliferative and angiogenic processes that involve the Notch and IGF1 pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!