First familial limb-girdle muscular dystrophy 2L in China: Clinical, imaging, pathological, and genetic features.

Medicine (Baltimore)

Department of Neurology, The Second Affiliated Hospital of Nanchang University Department of Neurology, The Third Hospital of Nanchang Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, China.

Published: September 2018

Limb-girdle muscular dystrophy 2L (LGMD2L) is mainly characterized by late adult onset, atrophy of proximal muscles, chronic progressive and asymmetric weakness, accompanied by increased creatine kinase (CK) levels, dystrophic pathological changes and electromyography showing myogenic damage. To date, familial LGMD2L was reported in European countries and had not been reported in China.A careful investigation of the clinical manifestations, muscle performance imaging, biopsy, and target next-generation sequencing (NGS) technology was utilized to identify pathogenic genetic variants in a 4-generation pedigree that includes 6 affected individuals.The results revealed mild-to-moderate hypertrophy of bilateral gastrocnemii and slight weakness and atrophy in the proximal muscles of the lower limbs, with obviously increased serum creatine kinase levels. The symptoms were more serious in the male proband but were also observed in females. Obvious and symmetric atrophy and fat infiltration of posterior segments of the thigh was evident in muscle magnetic resonance imaging (MRI). The pathological changes included a small amount of atrophic and hypertrophic fibers, scattered necrotizing fibers, a small number of increased nuclei, inward migration, mild proliferation of interstitial connective tissue, and no inflammatory cell infiltration. The pathogenic allele was a c.220C > T mutation in the anoctamin 5 (ANO5) gene.The LGMD2L family was characterized by mild chronic myopathy and bilateral gastrocnemius hypertrophy with obviously increased CK levels. Pathological changes included atrophy of fibers with interstitial connective tissues hyperplasia. The pathogenic allele was a c.220C> T mutation in the ANO5 gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160217PMC
http://dx.doi.org/10.1097/MD.0000000000012506DOI Listing

Publication Analysis

Top Keywords

pathological changes
12
limb-girdle muscular
8
muscular dystrophy
8
atrophy proximal
8
proximal muscles
8
creatine kinase
8
kinase levels
8
changes included
8
interstitial connective
8
pathogenic allele
8

Similar Publications

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.

J Cardiovasc Transl Res

December 2024

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.

View Article and Find Full Text PDF

Texture analysis generates image parameters from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Although some parameters correlate with tumor biology and clinical attributes, their types and implications can be complex. To overcome this limitation, pseudotime analysis was applied to texture parameters to estimate changes in individual sample characteristics, and the prognostic significance of the estimated pseudotime of primary tumors was evaluated.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Pan-cancer association of a mitochondrial function score with genomic alterations and clinical outcome.

Sci Rep

December 2024

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China.

Mitochondria are pivotal in cellular energy metabolism and have garnered significant attention for their roles in cancer progression and therapy resistance. Despite this, the functional diversity of mitochondria across various cancer types remains inadequately characterized. This study seeks to fill this knowledge gap by introducing and validating MitoScore-a novel metric designed to quantitatively assess mitochondrial function across a wide array of cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!