The key to extract the contents of cadmium in water by using remote sensing technique is to measure the spectrum of extinction coefficient per g·L(-1) and reflectance for its compounds. So in this paper, firstly, we choose two kinds of cadmium compounds, cadmium sulfide (CdS) and cadmium oxide (CdO), which are most commonly exsit in natural water, to measure the spectrums of extinction coefficient and reflectance for them. We use the equipment, designed on our own, which can adjust the path length of light passing and make our measuring results more accurate at visible and near-infrared wavelength range than others. Then we use Analytical Spectral Devices (ASD) spectrometer to measure the radiance of the light spot, which is from the direct light passed through cadmium compounds solutions of different concentrations reflected by the standard board. Using the ratio method to eliminate environmental errors and the effects of the thimbleful of suspended solids in water, we obtain the extinction coefficient per g·L(-1) of these two kinds of cadmium compounds from 400 to 900 nm. Secondly, we use ASD spectrometer to measure the reflectance spectrum of them in the sunny day at outdoor. The reflectance we obtain in this paper can help us to calculate the absorption and scattering coefficient per g·L(-1) in the future. The measuring results show that the extinction coefficient spectrum of CdS has two troughs at 550 and 830 nm and one peak at 675 nm. And the extinction coefficient spectrum of CdO decrease from purple to near-infrared. Both of their coefficient spectrums in blue are larger than green and red. And the value of the extinction coefficient per g·L(-1) of CdS is larger than CdO in the whole measuring wavelength range. The reflectance of CdS in yellow and red is larger than purple and blue, which increases rapidly from 500 to 650 nm and then leveling off. While the reflectance of CdO increase linearly from 525 to 900 nm. Both have obvious spectral characteristic. According to our results, the largest extinction coefficient appear at blue color, while the largest reflectance appear at yellow and red, which means that those bands are the most sensitive wavelength to detect the change of cadmium concentration in water. This study carries out with optical parameters measurements for optical activity of cadmium compounds specifically for water quality remote sensing for the first time. We conclude that the extinction coefficient and reflectance spectrums we obtained are reasonable, and the results can be used as the base parameter in the remote sensing inversion model for cadmium contents in water, which provides a breakthrough on using remote sensing technique to extract the heavy metal contents in water. Obtained these two optical parameters in this paper can provide powerful reference for band selection of the remote sensing image, which is used to extract cadmium contents in water, as well as provide the necessary important parameters of the remote sensing inversion model of cadmium contents in water.
Download full-text PDF |
Source |
---|
Chem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
During the process of developing smart chiroptical luminophores, small chiral organic dyes have emerged as candidates of utmost importance. In this regard, the chiral variants of boron dipyrromethene (BODIPY) serve as suitable molecules owing to their excellent photophysical properties such as high fluorescence quantum yields, narrow emission bandwidths with high peak intensities, high photo and chemical stability, and higher molar extinction coefficients. Thus, the last decade observed an influx of research from various research groups for the induction of chirality in originally achiral BODIPY.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department Chemical and Food Engineering, UFSC, Florianópolis, 88040-900, SC, Brazil.
Produced water management is a significant challenge for the oil and gas industry. Due to the large volumes and complex composition of this water, treatment requires special attention, resulting in high costs for companies in the sector. Naphthenic acids, known for their recalcitrance, add a layer of complexity to the treatment process.
View Article and Find Full Text PDFChem Asian J
December 2024
University of Oklahoma, Chemistry and Biochemistry, 101 Stephenson Pkwy, Room 3310, 73019, Norman, UNITED STATES OF AMERICA.
Proton-coupled electron transfer (PCET) reactions are fundamental to energy storage and conversion processes. By coupling electrons with protons, the net charge neutrality is retained, preventing electrode decomposition due to charge imbalance. PCET reactions with equimolar amounts of protons and electrons can be considered as a net H-atom transfer (HAT) reaction.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
Cyanine dye-containing nanoparticles have widely been used in "all-in-one" NIR fluorescence imaging (FI)-guided photothermal therapy (PTT) because of their intrinsically large extinction coefficient and available physical and chemical modulation methods to tune absorption and emission wavelengths. The combination of good brightness and excellent tumor-targeting capacity is the key to realize efficient NIR-II FI-guided PTT. In this study, by covalently decorating NIR-II absorptive cyanine dyes with bulky AIE motify, we demonstrate how steric hindrance suppresses π-π stacking-induced fluorescence quenching and contributes to the good brightness of NIR-II FI of subcutaneous glioblastoma.
View Article and Find Full Text PDFAdv Mater
December 2024
Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
Photoagents with ultra-high near-infrared II (NIR-II) light energy conversion efficiency hold great promise in tumor phototherapy due to their ability to penetrate deeper tissues and minimize damage to surrounding healthy cells. However, the development of NIR-II photoagents remain challenging. In this study, an all-fused-ring quinoidal acceptor-donor-acceptor (A-D-A) molecule, SKCN, with a BTP core is synthesized, and nanoparticles named FA-SNPs are prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!