AI Article Synopsis

  • Crimean-Congo hemorrhagic fever virus (CCHFV) is a serious tick-borne virus that affects humans and is found in over 30 countries, making it a significant health threat.
  • In this study, researchers used a specialized method to identify nine specific epitopes on the nucleocapsid protein (NP) of CCHFV, which serve as critical targets for diagnosis and potential vaccine development.
  • The identified epitopes showed high conservation across different CCHFV strains and were located on the surface of the NP, indicating their potential importance for vaccine design and diagnostic tests.

Article Abstract

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes severe disease in humans. CCHFV is widely distributed in more than 30 countries and distinct regions, which means that it poses a serious threat to human health. The nucleocapsid protein (NP) encoded by the CCHFV S gene is the primary detectable antigen in infected cells, which makes it an important viral antigen and a clinical diagnostic target. In this study, the modified biosynthetic peptide (BSP) method was used to identify the fine epitopes on the N- and C- terminals of NP from the CCHFV YL04057 strain using rabbit antiserum against CCHFV-NP. Nine epitopes were identified: E1a (178NLILNRGG185), E1b (184GGDENP189), E2 (352PLKWGKK358), E3 (363FADDS367), E4 (399NPDDAA404), E5a (447DIVASEHL454), E5b (452EHLLHQSL459), E6 (464SPFQNAY470) and E7 (475NATSANII482). Western blotting analysis showed that each epitope interacted with the positive serum of sheep that had been naturally infected with CCHFV. Amino acid sequence alignment between each epitope and their homologous proteins showed that they were almost 100% conserved among 12 CCHFV sequences from different lineages, except for epitopes E1a, E1b and E2. Three-dimensional structural modeling analysis showed that all identified epitopes were located on the surface of the NP "head" domain. This study identified fine epitopes on the N- and C- terminals of NP, which will increase the understanding of the structure and function of NP, and it could lay the foundation for the design and development of a CCHFV multi-epitope peptide vaccine and detection antigen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147494PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204264PLOS

Publication Analysis

Top Keywords

nucleocapsid protein
8
crimean-congo hemorrhagic
8
hemorrhagic fever
8
fever virus
8
fine epitopes
8
epitopes terminals
8
cchfv
7
epitopes
6
mapping b-cell
4
b-cell epitopes
4

Similar Publications

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

SARS-CoV-2 immune responses in patients with multiple myeloma and lenalidomide maintenance therapy.

Front Immunol

January 2025

Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany.

Introduction: Multiple myeloma (MM) is an uncontrolled plasma cell proliferation in the bone marrow, leading to immune dysregulation with impaired humoral immune responses. Conversely, cellular-based responses play a vital role in MM patients. However, the extent and duration of cellular-induced protection remain unclear to date.

View Article and Find Full Text PDF

Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms.

View Article and Find Full Text PDF

Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L).

View Article and Find Full Text PDF

Problem: COVID-19 during pregnancy is linked to increased maternal morbidity and a higher incidence of preterm births (PTBs), yet the underlying mechanisms remain unclear. Cellular senescence, characterized by the irreversible cessation of cell division, is a critical process in placental function, and its dysregulation has been implicated in pregnancy complications like PTB. Senescence can be induced by various stressors, including oxidative stress, DNA damage, and viral infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!