A two-year rotation of summer fallow (SF)/winter wheat (WW) is the most common cropping system in low precipitation areas of the U.S. Pacific Northwest (PNW). In SF, multiple tillage operations are used to manage weeds and maximize soil water storage and potential WW yield. Reduced tillage fallow (RTF) is an alternative to SF that leaves >30% of the previous crop's residue on the surface. A four-year (2014-18) field study was conducted to evaluate the influence of SF and RTF on weed species density, cover and composition in dryland WW; determine if changes in these weed infestation attributes have any influence on crop density and yield; and evaluate economic costs of each type of fallow management. The experimental design was randomized complete block with four replications where each phase of SF/WW and RTF/WW rotations was present every year. Individual plots of WW were divided into a weedy sub-plot with no weed control, general area with chemical weed control, and weed-free sub-plot where weeds were manually removed. Infestations of annual grass and other weeds in weedy sub-plots increased throughout the study. Grass weed cover, consisting mainly of downy brome (Bromus tectorum L.), and total weed cover were significantly lower in WW following RTF than following SF in all years except 2018. Densities of grass and total weeds were similar in both fallow managements indicating that weed plants were larger in WW following SF than following RTF due to earlier or faster emergence. Grass cover differences were not found in general areas likely because of a reduced seedbank. When weeds were present, mean yield of WW was higher following RTF than SF indicating that weeds were less competitive in RTF. Reduced tillage fallow could improve weed management in fallow/WW cropping systems of the PNW compared to SF/WW, particularly if the most problematic species are grasses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147650 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204200 | PLOS |
Heliyon
January 2025
ICAR-IIRR, Indian Institute of Rice Research, Hyderabad, 500 030, India.
Arbuscular mycorrhizal Fungi (AMF) are essential in agriculture and are often inter-linked with glomalin-related soil protein (GRSP) production which supports binding of aggregates, enhanced SOC and biological attributes. However, conservation agricultural practices in agroecosystem may have significant impact on AMF diversity, GRSP and soil quality-related parameters (SQRPs). This current experiment was implemented to gauge AMF conization percentage (AMF-CP), GSRP and significant changes on critical SQRPs, and to investigate the linkages between AMF-CP, GRSP and SQRPs as influenced by synergistic tillage and weed management in CA.
View Article and Find Full Text PDFData Brief
February 2025
Institute of Agricultural Sciences, Spanish National Research Council (ICA-CSIC), Serrano 115b, 28006 Madrid, Spain.
Identifying weed species at early-growth stages is critical for precision agriculture. Accurate classification at the species-level enables targeted control measures, significantly reducing pesticide use. This paper presents a dataset of RGB images captured with a Sony ILCE-6300L camera mounted on an unmanned aerial vehicle (UAV) flying at an altitude of 11 m above ground level.
View Article and Find Full Text PDFJ Liq Biopsy
December 2024
Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
Adenoid cystic carcinoma (ACC) is a rare and lethal malignancy that originates in secretory glands of the head and neck. A prominent molecular feature of ACC is the overexpression of the proto-oncogene MYB. ACC has a poor long-term survival due to its high propensity for recurrence and protracted metastasis.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, P.R. China.
Propyrisulfuron, a novel sulfonylurea herbicide, effectively suppresses intracellular acetolactate synthase activity for weed control, but its adsorption behavior in the soil environment remains unclear. To assess potential agroecosystem risks, the adsorption-desorption behavior and mechanism of propyrisulfuron in six typical agricultural soils of China were investigated using a batch equilibrium method, Density Functional Theory (DFT), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy equipped with Energy Dispersive X-ray (SEM-EDX) techniques. It is indicated that the adsorption-desorption of propyrisulfuron in six soils reached equilibrium at 36 hours under the optimum water-to-soil ratio (WSr) of 5:1.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Mechanical Engineering and Energy Technology, Lucerne University of Applied Sciences and Arts, CH-6048 Horw, Switzerland.
Automated agricultural robots are becoming more common with the decreased cost of sensor devices and increased computational capabilities of single-board computers. Weeding is one of the mundane and repetitive tasks that robots could be used to perform. The detection of weeds in crops is now common, and commercial solutions are entering the market rapidly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!