Using farmers' local knowledge of tree provision of ecosystem services to strengthen the emergence of coffee-agroforestry landscapes in southwest China.

PLoS One

Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.

Published: March 2019

Intensive monoculture coffee farms quickly expanded in Yunnan Province in the 1990's and 2000's. In 2012, local authorities in Pu'er and Xishuangbanna Prefectures, the main coffee producing centre in the province, initiated a large-scale conversion program of these farms towards coffee-agroforestry systems to promote "ecologically-friendly coffee". Shade tree inventories and household interviews were conducted in these two prefectures to characterize coffee farms and the Local Ecological Knowledge (LEK) of farmers on the provision of ecosystem services by associated tree species. This study on newly emerging coffee farming systems revealed a high level of tree species diversity at both farm and landscape levels despite the previous dominance of intensive coffee monoculture and the large-scale distribution of a limited number of shade tree species by the government. 162 tree species were encountered during farm inventories, out of which the community of coffee farmers was able to rank 30 against 9 ecosystem services and disservices. This study reveals that this LEK is a type of hybrid knowledge that still relies mostly on traditional knowledge of tree species combined with experience acquired from newly-implemented coffee-agroforestry practices. This study also pointed out knowledge gaps regarding the impact of mature trees on coffee yield, coffee quality and pest control. The participatory approach resulted in the identification of non-promoted species with a high potential to provide locally relevant ecosystem services in coffee-agroforestry systems. These results lead to the upgrade of an online tool (www.shadetreeadvice.org) which allows extension services generating lists of recommended shade tree species tailored to the local ecological context and individual farmers' needs. This tool will benefit farmers' livelihood, support landscape health and contribute to the sustainability of the emerging Yunnan coffee agriculture sector.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147441PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204046PLOS

Publication Analysis

Top Keywords

tree species
24
ecosystem services
16
shade tree
12
coffee
9
tree
8
knowledge tree
8
provision ecosystem
8
coffee farms
8
coffee-agroforestry systems
8
local ecological
8

Similar Publications

Extensive grazing carried out freely by exotic goats represents an important source of anthropogenic degradation in seasonally dry tropical forests of Brazil. The presence of these herbivores may negatively impact the local fauna through the reduction of habitat complexity. In this study, we investigate the effect of goat farming in scorpion assemblage from Brazilian seasonally dry tropical forest.

View Article and Find Full Text PDF

Thunb. (1784) is primarily distributed in eastern Asia,  has a total length of 152,778 bp and consists of a large single copy (LSC) region of 84,517 bp, a small single copy (SSC) region of 18,277 bp, and two inverted repeat (IRs) regions of 24,992 bp . The GC content is 37.

View Article and Find Full Text PDF

The complete mitochondrial genome of the was sequenced by Sanger platform. The circular mitogenome of (16,512 bp) encoded the typical 37 genes, and one non-coding regions. All of the protein-encoding genes were located on the H chain except ND6.

View Article and Find Full Text PDF

var. (2010), is a new variety of in Solanaceae. Here, we sequenced, assembled, and annotated the complete chloroplast (cp) genome of var.

View Article and Find Full Text PDF

, widely distributed in China, has a 152,467 bp chloroplast genome with a large single-copy (LSC) region of 83,473 bp, a small single-copy (SSC) region of 18,594 bp, a pair of inverted repeat regions (IRs) of 25,194 bp in length. The GC content is 36.46%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!