We present an analytical framework for optimizing the efficiency of ultrasonic wireless power links for implantable devices scaled down to sub-mm dimensions. Key design insights and tradeoffs are considered for various parameters including the operating frequency, the transmission depth, the size of the transmitter, the impedance and the aperture efficiency of the miniaturized receiver, and the interface between the receiver and the power recovery chain on the implant. The performance of spherically focused transducers as ultrasonic transmitters is analyzed to study the limits and the tradeoffs. Two optimization methods are presented: "Focal Peak" sets the focus of transducers at target depths, and "Global Maximum" maximizes the efficiency globally with off-focus operation. The results are also compared to phased array implementations. To investigate the efficiency of implants, miniaturized receivers made from single crystalline piezoelectric material, PMN-PT, are used as they have resonances in the derived optimal carrier frequency range (∼1-2 MHz). A methodology to achieve an efficient interface to the power electronics is then provided using an optogenetic stimulator as an example platform. The analytical results are verified through both simulations and measurements. Finally, an example ultrasonic link using a spherical transmitter with a radius of 2 cm is demonstrated; link efficiencies of 1.93-0.23% are obtained at 6-10 cm depths with sub-mm receivers for the optogenetic application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269189PMC
http://dx.doi.org/10.1109/TBCAS.2018.2871470DOI Listing

Publication Analysis

Top Keywords

power links
8
end-to-end design
4
design efficient
4
ultrasonic
4
efficient ultrasonic
4
power
4
ultrasonic power
4
links scaling
4
scaling submillimeter
4
submillimeter implantable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!